• Title/Summary/Keyword: Rubber friction

Search Result 191, Processing Time 0.027 seconds

Development of the Friction tester for Rubber (고무 마찰 시험기의 개발)

  • 오성모;천길정;이봉구;김완두
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.139-143
    • /
    • 1998
  • Applying design methodology, new type friction tester has been developed. Functional analysis has been executed and functional structure were constructed during the conceptual design. Optimal solution has been selected and a proto model has been manufactured according to the conceptual design. Using the proto model, experiments have been carried out and the test results were proved to be satisfied and reliable.

  • PDF

A Study on Friction-induced Surface Fracture Behaviors of Thermoplastic Polyurethane (TPU)/Rubber Blends (열가소성 폴리우레탄 (TPU)/고무 블렌드의 마찰에 의한 표면 파괴 거동)

  • Jeon, Jun-Ha;Park, Sang-Min;Um, Gi-Yong;Bea, Jong-Woo
    • Journal of Adhesion and Interface
    • /
    • v.14 no.3
    • /
    • pp.121-127
    • /
    • 2013
  • In this work, the thermoplastic polyurethane (TPU) was melt-blended with EPDM, NBR and BR to form TPU/Rubber blend films, their composition and friction-induced surface fracture relationship was investigated. TPU/EPDM and TPU/BR blends exhibited the improved friction-induced surface fracture, especially the effect of BR was excellent. With addition of more than 10 wt% BR, TPU/BR blends exhibited the improved friction-induced surface fracture. The increase of the soft segment with increasing BR content, which was confirmed by scanning electron microscopy (SEM) analysis enabled us to estimate the improved friction-induced surface fracture.

Development of a Friction Tester and Experimental Study on the Frictional Characteristics of Rubbers (고무류의 마찰시험기 개발 및 마찰특성에 관한 실험적연구)

  • 천길정;오성모;이동환;이봉구;김완두
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.193-198
    • /
    • 1999
  • Applying design methodology, new type friction tester has been developed. Functional analysis has been executed and functional structure were constructed during the conceptual design. Optimal solution has been selected and a proto model has been manufactured according to the conceptual design. Using the tester developed in the laboratory, frictional characteristics of natural rubbers have been experimentally analyzed. Friction coefficient has been calculated from the measured normal force and friction force under various speeds, loads, and temperatures. The corelations between the various operating conditions and friction coefficients have been verified. Especially, drag friction due to the visco-elastic behavior of the rubber has been observed in this analysis.

On the Damping of A Shock Absorption Device Composed of Disk Spring Stacks (디스크 스프링의 적층 배열에 따른 완충장치의 감쇠에 관한 연구)

  • Choi, Myung-Jin;Ko, Seok-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • The damping of a shock absorption device composed of nonlinear disk spring stacks and rubber rings was investigated. Friction forces of rubber rings and hysteresis of disk springs were obtained experimentally. The hysteresis curves of several types of disk spring stacks were approximated, from which the energy dissipated was estimated. Based upon the friction force and the energy dissipated, 4 damping models were presented and shock responses of the damping models were investigated. The hysteresis of disk spring is more meaningful than the friction of the rubber ring for the damping. For practical use, equivalent viscous damping model for total energy dissipated per cycle was suggested.

  • PDF

The Characteristics of Wiper Blade Rubber with Surface Treatments (와이퍼 블레이드 고무의 표면 처리에 따른 특성)

  • Rho, Seung-Baik;Lim, Mi-Ae;Park, Jin-Kyu;Son, Jeon-Ik
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • The surface of wiper blade(W/B) rubber was chlorinated by chemical treatment method using the hydrochloric acid(HCI) and sodium hypochlorite(NaOCl). From the results of contact angle measurement, friction coefficient measurement, and ATR-IR spectra, the surface characteristics of chlorinated W/B rubber with time of chlorination were studied. Contact angles for W/B rubber with increasing time of chlorination and chlorine concentration were measured for the water and ethylene glycol. From the results, contact angle fell rapidly with increasing time of chlorination and chlorine concentration, reaching a constant value after about 10min. And the wettability of W/B rubber surface by means of chlorination has been improved. For an unchlorinated W/B rubber, the friction coefficient with time of chlorination decreased from 1.27 to 0.20~0.23 on full chlorination. As the results it was considered that abrasion resistance of W/B rubber surface has been also improved. The values of pH and $Cl^-$ ion concentration in a chlorine treatment solution decreased as the extent of chlorination of W/B rubber surface increased. From the results of ATR-IR spectra, it was observed that C=C double band of W/B rubber surface transformed into C-Cl band, but quantitative determination of the extent of chlorination was not feasible because of the complexity of chlorination reactions.

  • PDF

Shear Properties of Bottom Ash-Crumb Rubber Mixture Reinforced with Waste Fishing Net Using Triaxial Test (삼축압축시험에 의한 폐어망 보강 저회-폐타이어 혼합토의 전단특성)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.81-91
    • /
    • 2013
  • This paper investigates the shear properties of bottom ash-crumb rubber mixture reinforced with waste fishing net. Mixtures used in this experiment were prepared at 2 different percentages of crumb rubber (2 mm~10 mm) content (i.e., 0%, 50% by weight of the dry bottom ash). In this study several series of triaxial tests were carried out on the six different specimens : unreinforced bottom ash, reinforced bottom ash with 1 or 2 layers, unreinforced mixture, reinforced mixture with 1 or 2 layers. The experimental results indicated that the shear properties of bottom ash-crumb rubber mixture were strongly influenced by reinforcing layer of waste fishing net and crumb rubber addition. It is shown that the internal friction angle of bottom ash-crumb rubber mixture decrease with addition of crumb rubber due to the compression properties of crumb rubber. However, the internal friction angle of the mixture increased with an increase in reinforcing layer due to interlocking effect and friction between mixture and waste fishing net.

A Shaking Table Test of Small Isolation System Considering the Floor Response (층응답을 고려한 소형면진장치의 진동대실험)

  • Kim, Min-Kyu;Choun, Young-Sun;Lee, Kyung-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.497-504
    • /
    • 2005
  • This paper presents the results of experimental studies on the equipment isolation effect considering the floor response. For this purpose, shaking table tests were performed. For the measuring the floor response, numerical analysis was performed. For the isolation for the equipment, Natural Rubber Bearing(NRB), High Damping Rubber Bearing(HDRB) and Friction Pendulum System(FPS) were used. Finally, it is presented that the isolation systems used in this test can be adopted for the small equipment isolation. But the rubber bearing used in this study affected to the temperature change very sensitively.

  • PDF

Simulation and Experiment of Elastomer Seal for Pneumatic Servo Cylinder

  • Hur, Shin;Song, Kyung Jun;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • The rubber seal is a part inserted into servo cylinder to keep the air pressure constant. In order for efficient movements of the servo cylinder, the frictional coefficient of the rubber seal needs to be minimized while the sealing is maintained. In this work the friction characteristics of rubber seal specimen are tested on metal plate at various conditions. The experimental conditions include roughness level, applied pressure, lubrication, and rubbing speed. The design of experiment approach is taken to assess the effect of each parameter. The nonlinear frictional response of the rubber is applied to the FEM model simulating the servo cylinder movement. The result demonstrates that precise optimization of the servo cylinder movement must be preceded by preliminary experiments coupled with the theory and FEM model.

An Experimental Study on The Friction Coefficient of Rubbers for Clutch Master Cylinder Cup-Seals (클러치 마스터실린더 컵-시일 고무의 마찰계수 실험 연구)

  • 이재천;임문혁;이병수;장지현;정용승;허만대;최병기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.112-118
    • /
    • 2003
  • The friction coefficients of the rubber for clutch master cylinder were experimentally measured in this study. The cylindrical rubber samples for primary cup-seal and secondary cup-seal were tested against the aluminum or the steel plates of master cylinder housing under the various conditions of brake oil temperatures and normal loads. Dry sliding friction coefficients were also measured under various load conditions. The test revealed following results. First, the friction coefficient under fluid lubrication condition in general decreases, as the oil temperature or normal load increases. Second, the steel plate of low surface roughness yielded comparatively low friction coefficient on the range of 0.30∼0.67. On the other hand, the aluminum plate of high surface roughness yielded high friction coefficient on the range of 0.31∼1.15. Third, the friction coefficient of dry surface contact decreases as the normal load increases. This is contrary to the general principle of friction coefficient between metal plates.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.