• Title/Summary/Keyword: Rubber friction

Search Result 193, Processing Time 0.025 seconds

Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis (자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

Wear Characteristics of Rubber-Seal for Inflow of Dust Particle in Automobile Chassis System PART I : Analysis of Dust Particle for Inflow in Automobile Chassis System (자동차 섀시 시스템에 유입되는 먼지입자에 의한 고무-시일 부품의 마멸특성 PART I : 자동차 섀시 시스템에 유입되는 먼지입자분석)

  • Lee, Young-Ze;Chung, Soon-Oh;Won, Tae-Yeong;Kim, Gi-Hoon;Kim, Dae-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.120-124
    • /
    • 2009
  • In automobile chassis system, several environmental factors weaken durability of automobile's components. The environmental factors are temperature, humidity, intensity of radiation and dust particle inflow. Especially, dust particle inflow leads to increase in friction and wear of automobile's components. The wear of automobile's component leads to increase in noise and exerts a bad influence on life of components. In this study, dust particles were investigated for study on the influence of dust particle inflow. Dust particles are collected on urban area, rural area and highway in China. The size of dust particle is analyzed using the image plus program, and the element of dust particle is analyzed using the SEM and EDX. The elements of dust particle are $SiO_2$ and $Al_{2}O_{3}$. The other elements(Na, Ca, Cl etc..) are detected on urban area and highway.

The smart PFD with LRB for seismic protection of the horizontally curved bridge

  • Kataria, N.P.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.691-708
    • /
    • 2016
  • Recently, number of smart material are investigated and widely used in civil construction and other industries. Present study investigates the application of smart semi-active piezoelectric friction damper (PFD) made with piezoelectric material for the seismic control of the horizontally curved bridge isolated with lead rubber bearing (LRB). The main aim of the study is to investigate the effectiveness of hybrid system and to find out the optimum parameters of PFD for seismic control of the curved bridge. The selected curved bridge is a continuous three-span concrete box girder supported on pier and rigid abutment. The PFD is located between the deck and abutments or piers in chord and radial directions. The bridge is excited with four different earthquake ground motions with all three components (i.e. two horizontal and a vertical) having different characteristics. It is observed that the use of semi-active PFD with LRB is quite effective in controlling the response of the curved bridge as compared with passive system. The incorporation of the smart damper requiring small amount of energy in addition with an isolation system can be used for effective control the curved bridge against the dynamic loading.

Performance Evaluation of IRB System Using Seismic Isolation Test (내진시험을 통한 IRB 시스템의 성능 평가)

  • Park, Young-Gee;Ha, Sung Hoon;Woo, Jae Kwan;Choi, Seung-Bok;Kim, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.401-406
    • /
    • 2013
  • This paper presents experimental evaluation of IRE (isolation roller bearing) seismic isolation device. From the combination of base isolation on the IRE system displacement response spectrum and acceleration response spectrum, the compressive strength and the coefficient of friction experiments. Also the IRE system is evaluated by environment test according to KS standards. Both the resonance and seismic experiments using a combination of the IRE and Natural Rubber Bearing (NRB) are performed in order to analyze the seismic isolation of the IRE system dynamic characteristics. For the given load and exciting frequency, the resonant frequency becomes lower, but the resonant magnification remains to be same. However, it is shown that when we consider the IRE only, the vibration on the table with the horizontal movement and the independent horizontal displacement due to the rolling motion of the plate and roller are significantly reduced. This result verifies that the proposed optimal design method of the IRE system is very effective.

  • PDF

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

Shape Optimization of Uniaxial Vibrating Metal Damper (일축 진동형 금속제진장치 형상 최적설계)

  • Yoon, Ji-Hoon;Park, Ji-Woon;Lim, Yun-Mook;Yoon, Gil-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • This study performs the structural analysis and the optimum design of a vibrating metal damper to absorb vibration energy. Unlike other dampers such as rubber bearing, friction or viscose dampers, the present vibrating metal damper utilizes the plastic deformation of a steel and its associated hysteresis phenomenon to reduce vibrations of structures. To optimize this vibrating metal damper, it is important to obtain plastic deformation through the damper. To achieve this, the shape optimization method is developed and applied to find out optimal envelopes of the metal damper. Depending on the parameterization scheme, some novel optimal shapes can be found.

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

Pot Life Assessment and Mechanical Property of Fast Curing Polyurethane Developed with Eco-friendly Pre-polymer

  • Joseph, Jessy;Moon, Junho;Kong, Tae Woong;Kim, Dong Ho;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • 4,4'-Methylenebis(2-chlorobenzenamine) (MOCA)-free fast curing polyurethanes were prepared. In this study, the processibility of a fast curing polyurethane system was characterized by assessing the pot life. The obtained pot life of the polyurethane was 6-8 s, indicating that this prepolymer-curative system is appropriate for ribbon flow casting. The influence of the NCO index on the viscosity and mechanical properties was evaluated. The viscosity, tensile strength, tear strength, and hardness of the as-prepared polyurethanes showed an increasing trend, with an increase in the NCO index, whereas the elongation at break increased initially and then decreased with an increase in the NCO index. The gel fraction and crosslink density showed a direct correlation with the NCO index, which substantiated the improved mechanical properties at the higher NCO index. The coefficients of friction and abrasion deteriorated with an increase in the NCO index.

Characteristics of Tire-Road Wear Particles Produced on Indoor Parking Garage Ramp

  • Uiyeong Jung;Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.59 no.3
    • /
    • pp.97-107
    • /
    • 2024
  • Indoor parking garages have concrete-paved inclined ramps, contributing to high tire friction and increased slip angles. Therefore, the abrasion behavior of tire treads on an indoor parking garage ramp differs from those on common asphalt-paved roads, leading to variations in the generated TRWPs. The TRWP densities ranged from low (< 1.1 g cm-3) to high (> 1.8 g cm-3), and the degree of mineral particles adhering to the surface of tire wire particles increased with density. The densities and aspect ratios of the TRWPs generated in the parking garage varied depending on the ascent and descent ramps and the slip angles of tires. The TRWPs generated in the parking garage were distributed at a lower density than those produced on asphalt-paved roads and had lower aspect ratios. TRWPs generated from tires at large slip angles mostly exhibited densities below 1.1 g cm-3 on the ascent and descent ramps in the parking garage. Such low-density TRWPs can be easily resuspended by traffic in the air and may remain suspended in aquatic environments for prolonged periods upon entering rivers and seas.