• Title/Summary/Keyword: Rubber bearing

Search Result 291, Processing Time 0.027 seconds

Effects of Thermal Aging of Natural Rubber Bearing on Seismic Performance of Bridges (천연고무받침의 열 노화가 교량 내진성능에 미치는 영향)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.855-864
    • /
    • 2013
  • The dynamic characteristics of natural rubber bearings, which are used as isolator, are dependent on the main rubber's dynamic behaviors and nonlinear properties. Rubber materials tend to undergo an aging process under the influence of mechanical or environmental factors, so they inevitably end up facing damage. A main cause of aging like this is known to be oxidization, which occurs through the heat of reaction at high temperatures. Accordingly, in this study an accelerated thermal aging test was carried out in order to compare the characteristic values of the bearings before and after thermal aging occurs. As a result of this experiment, it was found that a thermal aging phenomenon could have some effects on shear stiffness, energy absorption, and equivalent damping coefficients of the bearings. Furthermore, a deterioration in the dynamic properties of the natural rubber bearings caused by the thermal aging was applied to an actual bridge and then the effects of such thermal aging on the seismic performance of the bridge were also compared and analyzed based on numerical analysis. As a result of this analysis, it was found that the changes in the basic properties of the natural rubber bearings caused by the thermal aging bring only a minor effect on the seismic performance of bridges.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Influence of Aging of Lead Rubber Bearing on Seismic Performance of Bridges (납고무받침의 노화가 교량의 내진성능에 미치는 영향)

  • Park, Seong-Kyu;Oh, Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.109-116
    • /
    • 2012
  • The dynamic properties of lead rubber bearings, which are used as isolator, are dependent on the main rubber's dynamic behaviors and nonlinear qualities. Rubber materials tend to undergo an aging process under the influence of mechanical or environmental factors, so they can end up inevitably facing damage. A main cause of such aging is known to be oxidization, which occurs through the heat of reaction at high temperatures. Accordingly, in this study an accelerated thermal aging test was carried out in order to compare the characteristic values of the bearings with each other before and after thermal aging occurs. As a result of this experiment, it was found that a thermal aging phenomenon could have an effect on shear stiffness, energy absorption, and equivalent damping coefficients. Furthermore, a decline in the dynamic properties of the lead rubber bearings by means of the thermal aging process was applied to an actual bridge and the effects of such thermal aging on the seismic performance of the bridge were also compared and analyzed based on numerical analysis. As a result of this analysis, it was found that the changes in the basic properties of the lead rubber bearings have a minor effect on the seismic performance of bridges.

An Experimental Study of the Long-term Creep characteristic of High Damping Rubber Bearings (고감쇠 고무받침의 장기 크리프 특성에 대한 실험적 연구)

  • Oh, Ju;Park, Jin-Young;Park, Kun-Nok;Kim, See-Dong;Park, Sung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Isolated structures use devices such as high damping rubber bearings (HDRB) in order to dramatically reduce the seismic forces transmitted from the substructure to the superstructure. The laminated rubber bearing is the most important structural member of a seismic isolation system. The basic characteristics of rubber bearings have been confirmed through compression tests, compressive shearing tests and creep tests. This paper presents the results and analysis of a 1000hr, ongoing creep test conducted at 7.5MPa, 8.37MPa in our laboratory. The long-term behavior of bridge bearings, such as high-damping rubber bearings, will be discovered through a compression creep test subjected to actual environmental conditions. These tests indicated that the maximum creep deformation is about $0.3{\sim}1.92%$ of total rubber thickness.

Model Tests on a Plastic Pipe Pile for the Analysis of Noise, Energy Transfer Effect and Bearing Capacity due to Hammer Cushion Materials (해머 쿠션 재질에 따른 모형말뚝의 소음, 에너지 전달효율 및 지지력 분석)

  • Lim, Yu-Jin;Hwang, Kwang-Ho;Park, Young-Ho;Lee, Jin-Gul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.33-43
    • /
    • 2006
  • Driving tests using model plastic piles with different hammer cushion materials were performed in order to evaluate the efficiency of energy transfer ratio from the hammer, degree of vibration of the surrounding ground and noise due to impacting. A small pile driving analyzer (PDA) was composed using straingages and Hopkinson bar which is measuring force signal and pile-head velocity. The hammer cushion (cap block) materials used for the model driving tests were commercial Micarta, plywood, polyurethane, rubber (SBR) and silicone rubber. The highest energy transfer ratio was obtained from Micarta in the same soil and driving conditions. Micarta was followed by polyurethane, plywood, rubber and silicone in descending order. The more efficient energy transfdr ratio of the hammer cushion materials became, the bigger average noisy (sound) level was found. In addition, Micarta and polyurethane provided bigger bearing capacities than other materials compared in the same soil and driving conditions in which the static loading tests were performed at the end of driving.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

A Study on Machining for Bearing Rubber Seal Die by Flank of Formed Insert Type Tool (Insert type 총형공구 여유각 영향에 따른 베어링 Rubber Seal 금형의 가공성 평가)

  • Li-Hai Li
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.42-47
    • /
    • 2004
  • Formed insert type tool satisfy both the surface roughness and geometric accuracy, so that cutting edge of formed tool can duplicate final feature. For experiment the formed tools with various clearance angles are machined. And the tools are evaluated with respect cutting force, flank rear and surface roughness to optimistic condition.

  • PDF

Theoretical tensile model and cracking performance analysis of laminated rubber bearings under tensile loading

  • Chen, Shicai;Wang, Tongya;Yan, Weiming;Zhang, Zhiqian;Kim, Kang-Suk
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.75-87
    • /
    • 2014
  • To analyze the tension performance of laminated rubber bearings under tensile loading, a theoretical tension model for analyzing the rubber bearings is proposed based on the theory of elasticity. Applying the boundary restraint condition and the assumption of incompressibility of the rubber (Poisson's ratio of the rubber material is about 0.5 according the existing research results), the stress and deformation expressions for the tensile rubber layer are derived. Based on the derived expressions, the stress distribution and deformation pattern especially for the deformation shapers of the free edges of the rubber layer are analyzed and validated with the numerical results, and the theory of cracking energy is applied to analyze the distributions of prediction cracking energy density and gradient direction. The prediction of crack initiation and crack propagation direction of the rubber layers is investigated. The analysis results show that the stress and deformation expressions can be used to simulate the stress distribution and deformation pattern of the rubber layer for laminated rubber bearings in the elastic range, and the crack energy method of predicting failure mechanism are feasible according to the experimental phenomenon.

Study on Cold/Oil Atmosphere Resistance Property of Face Seal Rubber for Track Layer

  • Shin, Jae Won
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • A face seal comprising a metal ring and acrylonitrile butadiene rubber (NBR) was installed in the driving part and suspension unit. The seal serves as a bearing and simultaneously prevents entry of foreign matter from external environment as well as internal oil leakage. Subsequently, the rubber-rod ring generates axial pressure owing to rubber elasticity (hardness), performs static sealing function between housing details and outer diameter of seal, and transmits rotational torque to the rotating support ring. In order to improve the durability of NBR, which performs the above tasks, and to effectively use it in tracked-vehicle applications at extreme temperatures, this study reports a mixing design approach to enhance cold and oil resistances of NBR.

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.