• 제목/요약/키워드: Rubber Materials

검색결과 1,022건 처리시간 0.024초

LPLi 인젝터의 누설특성 및 내구평가에 관한 실험적 연구 (An Experimental Study on the Leakage Characteristics and Durability Evaluation of an LPLi Injector)

  • 최영;김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제12권4호
    • /
    • pp.204-210
    • /
    • 2007
  • The worldwide energy problem and global warming cause the need of alternative fuels which feature low carbon-dioxide emission and another energy source. Liquefied Petroleum Gas (LPG) is one of the alternative fuels widely used as domestic and transportational fuel. The third generation LPLi fuel supply system has merits in the increase of engine power and low emissions. The injectors used in LPLi system should overcome a leakage problem and satisfy the durability conditions. Therefore, 1000 hour durability test of the injectors was carried out throughout this research. First, the spray pattern and the penetration length of the selected injectors is graphically shown. Next, the leakage amount with respect to the injection cycle is introduced. Finally, the shapes of nozzle holder and nozzle tip after durability test was investigated by analyzing the microscopic image of the injector tip. The variation in the shape of nozzle tip mainly due to the residue of rubber materials is found to be the reason for leakage.

  • PDF

Study on a seismic slit shear wall with cyclic experiment and macro-model analysis

  • Jiang, Huanjun;Lu, Xilin;Kwan, A.K.H.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.371-390
    • /
    • 2003
  • The concept of the seismic slit shear wall was proposed in the early 1990's. A series of experimental and theoretic studies on the wall with reinforced concrete short connecting beams cast in the slit were carried out. In this paper another type of slit shear wall is studied. It is one with vertical slit purposely cast within the wall, and the rubber belt penetrated by a part of web shear reinforcement as seismic energy-dissipation device is filled in the slit. Firstly, an experiment under cyclic loading was carried out on two shear wall models, one slit and the other solid. The failure mechanism and energy-dissipation capacity are compared between the two different models, which testifies the seismic performance of the slit wall improved significantly. Secondly, for engineering practice purpose, a macroscopic analytical model is developed to predict the nonlinear behavior of the slit shear wall under cyclic loading. The mechanical properties of each constituent elements of this model are based on the actual behavior of the materials. Furthermore, the effects of both the axial force and bending moment on the shear behavior are taken into account with the aid of the modified compression-field theory. The numerical results are verified to be in close agreement with the experimental measurements.

Investigation of Bottom Cracks in the Carbonated Poly(ethylene terephthalate) Bottle

  • Pae, You-Lee;Nah, Chang-Woon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제38권4호
    • /
    • pp.354-362
    • /
    • 2003
  • The use of a petaloid design for the bottom of carbonated poly(ethylene terephthalate)(PET) bottles is widely spread. This study investigated the causes of bottom cracks. The tensile yield stress variations of PET according to the crystallinity and stretch ratio were examined, then the stretch ratio and strength in the bottom area of a blown bottle were analyzed. A crack test was also performed to observe the cracking phenomena. The distribution of the effective stress and maximum principal stress were both examined using computer simulation to seek the influence of the bottom design on crack. It was concluded that the bottom cracks occurred because of inadequate material strength due to the insufficient stretching of PET, plus the coarse design of a petaloid bottom. The stretch ratio at the bottom during bottle blowing should be higher than the strain hardening point of PET to produce enhanced mechanical strength. The cracks in the bottom of the PET bottles occurred through crazing below the yield stress. The maximum principal stress was higher in the valleys of the petaloid bottom than in the rest bottom area, and the maximum principal stress had a strong effect on the cracks.

Synthesis and Thermal Properties of Poly(benzoxazole)s Based on Pendants

  • Jang, Hyewon;Lee, Seulbi;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • 제50권2호
    • /
    • pp.138-145
    • /
    • 2015
  • A series of wholly aromatic poly(hydroxyamide)s(PHAs), containing varying amounts of 2,6-dimethylphenoxy group and quinoxaline ring in the main chain, were synthesized by a direct polycondensation method. The inherent viscosities of the PHAs in either DMAc or DMAc/LiCl solution at $35^{\circ}C$ were found to be in the range of 1.02~1.90 dL/g. In the solubility study, we observed that PHA 1, PHA 2, and PHA 3 were dissolved in aprotic solvents such as DMAc, NMP, DMF, and DMSO with LiCl on heating; however, PHA 4, PHA 5, and PHA 6 could be dissolved in aprotic solvents on heating without LiCl. For poly(benzoxazole)s(PBOs), the 10% and maximum weight loss temperatures were in the range of $582{\sim}622^{\circ}C$ and $630{\sim}659^{\circ}C$, respectively. Residues of PBOs at $900^{\circ}C$ were found to be relatively high, which were in the range of 65.3~70.8%.

FCEV용 고압연료탱크 메탈씰링 파이프의 체결특성 해석 (Analysis on Fitting Characteristics of a Metal-Sealing Pipe of the Hydrogen Fuel Tank for FCEV)

  • 이정민;정화정;전문수;이형욱
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.54-59
    • /
    • 2018
  • In connecting parts of a hydrogen fuel cell vehicle, since the rubber ring is permeable to hydrogen, it is necessary to use a metal sealing structure which ensures leakage stability. Finite element analysis was performed to verify the fitting characteristics of the metal sealing structure, which is used to connect the pipe to a high pressure hydrogen FCEV tank. Deformation shape, contact distance and axial load were compared experimentally and these values were in agreement with each other. In the contact surface, between the pipe and the fitting body, the stress at the edge of the contact surface was higher than the center point, which was considered to be a good characteristic in view point of the leakage. The location of the contact points has almost no change in the upper part of the fitting, but that of the lower parts move downward as the fastening amount increases. The contact pressure at the lower part is maintained at the same constant level.

Temperature Analysis of Nozzle in a FDM Type 3D Printer Through Computer Simulation and Experiment

  • Park, Jung Hyun;Lyu, Min-Young;Kwon, Soon Yong;Roh, Hyung Jin;Koo, Myung Sool;Cho, Sung Hwan
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.301-307
    • /
    • 2016
  • Additive manufacturing (AM), so called 3D Printing is a new manufacturing process and is getting attraction from many industries. There are several methods of 3D printing. Among them fused deposition modeling (FDM) type is most widely used by reason of cheap maintenance, easy operation and variety of polymeric materials. Articles manufactured by 3D printing have weak deposition strength compared with conventionally manufactured products. Deposition strength of FDM type 3D printed article is highly dependent of deposition temperature. Subsequently the nozzle temperature in the FDM type 3D printing is very important and it is controlled by heat source in the 3D printer. Nozzle is connected with heat block and barrel, and heat block contains heat source. Nozzle becomes hot through heat conduction from heat source. Nozzle temperature has been predicted for various thermal boundary conditions by computer simulation and compared with experimental measurement. Nozzle temperature highly depends upon thermal conductivities of heat block and nozzle. Simulation results are good agreement with experiment.

차량 부품의 내구성 평가를 위한 가상시험실 구축 (The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory)

  • 김기훈;강우종;김대성;고웅희;임재용
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

연직배수재의 통수능력 저감요인 분석을 위한 실험적 연구 (Experimental Study on the Reduction of the Discharge Capacity of Vertical Drains)

  • 김찬기;채영수;이강일
    • 한국지반신소재학회논문집
    • /
    • 제4권3호
    • /
    • pp.3-10
    • /
    • 2005
  • 본 연구는 연직 배수재의 통수능력 저감 요인인 측방토압, 동수경사, 배수재의 변형에 의한 통수능력의 저감을 밝히기 위하여 현장조건에 가장 부합되는 고무 멤부레인 안에 하모니카형, 성곽형, 파이버형 드레인을 설치한 후 드레인 주변에 슬러리 상태의 점토를 넣고 통수능 특성에 관한 실험을 실시하였다. 그 결과 배수재의 종류에 따른 통수능력은 하모니카형, 성곽형, 파이버형 순으로 통수능력이 컸으며, 또한 측압 보다 동수경사에 대한 통수능력 감소가 높게 나타났다.

  • PDF

바닥 거칠기 및 미끄럼판 재질에 따른 미끄러짐 특성 연구 (Experimental Study on Slip Characteristics of Floor Surface Roughness and Slider Materials)

  • 김정수;박재석
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.65-69
    • /
    • 2010
  • This paper presented an experimental study of slip resistance characteristics of shoes and floor surface contact with special focus on the effect of surface roughness, outsole material and mechanical abrasion. The factors that affected the results of slip resistances were investigated for four kinds of rubbers and five kinds of floor samples using the VIT(English XL) tribometer. The slip resistance was observed to increase gradually with increasing roughness for five kinds of floor roughness. In the higher surface roughness (larger than $11.5{\mu}m$), the slip resistance increased more rapidly and exceeded safety criteria at $22.60{\mu}m$. The slip resistance was observed to decrease with increasing hardness of outsole, except for butylenes rubber, which seemed to show the material property. The slip resistance decreased with number of trials. In the first several times(5 or 6 trial), the slip resistance decreased more rapidly, whereafter it approached gradually constant value. The slip resistance of surfaces has generally been shown to increase with floor surface roughness and to decrease with hardness of outsole and number of trials under the wet condition.

인공촉각과 피부를 위한 탄소나노튜브 기반 생체 모방형 신경 개발 (A Biomimetic Artificial Neuron Matrix System Based on Carbon Nanotubes for Tactile Sensing of e-Skin)

  • 김종민;김진호;차주영;김성용;강인필
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.188-192
    • /
    • 2012
  • In this study, a carbon nanotube (CNT) flexible strain sensor was fabricated with CNT based epoxy and rubber composites for tactile sensing. The flexible strain sensor can be fabricated as a long fibrous sensor and it also may be able to measure large deformation and contact information on a structure. The long and flexible sensor can be considered to be a continuous sensor like a dendrite of a neuron in the human body and we named the sensor as a biomimetic artificial neuron. For the application of the neuron in biomimetic engineering, an ANMS (Artificial Neuron Matrix System) was developed by means of the array of the neurons with a signal processing system. Moreover, a strain positioning algorithm was also developed to find localized tactile information of the ANMS with Labview for the application of an artificial e-skin.