• Title/Summary/Keyword: Rubber Compound

Search Result 221, Processing Time 0.023 seconds

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

Effect of 1,3-Diphenyl-guanidine (DPG) Mixing Step on the Properties of SSBR-silica Compounds

  • Lim, Seok-Hwan;Lee, Sangdae;Lee, Noori;Ahn, Byeong Kyu;Park, Nam;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.81-92
    • /
    • 2016
  • 1,3-Diphenylguanidine (DPG) is commonly used as a secondary accelerator which not only acts as booster of cure but also activating silanization reaction. The aim of this study is to increase the interaction between silica and rubber by using DPG. In this study, mixing was proceeded in two steps. The T-1 compound is mixed DPG with silica and silane coupling agent in the kneader at high temperature which is named as $1^{st}$ mixing step. T-3 compound is mixed DPG with curatives in the two-roll mill at low temperature which is named as $2^{nd}$ mixing step. The T-2 compound is mixed a half of DPG in $1^{st}$ mixing step and the remainder is mixed in $2^{nd}$ mixing step. Total DPG content was equal for all compounds. When DPG is mixed with silica, silane coupling agent during the $1^{st}$ mixing step, a decrease in cure rate and an increase in scorch time can be seen. This indicates that DPG is adsorbed on the surface of silica. during rubber processing. However, bound rubber content is increased and dynamic properties are improved. These results are due to the highly accelerated silanization reaction. However, there are no significant difference in 100%, 300% modulus.

Aging Property Studies on Rubber Gasket for Polymer Electrolyte Membrane Fuel Cell Stack (고분자 전해질 연료전지 스택용 고무 개스킷의 노화특성 연구)

  • Kang, Dong-gug;Hur, Byung-ki;Lee, Dong-won;Seo, Kwan-ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2011
  • In order to explore properties of various rubber compounds after thermal aging under the condition similar to the operating environment of a fuel cell-stack, heat resistance and compression set of those compounds were investigated for a long term operation in $H_2SO_4$, $H_2O$, and LLC (ethylene glycol : $H_2O=50:50$) solution. It was assumed that aging Acrylonitrile butadiene rubber (NBR) and Elthylene Propylene diene rubber (EDPM) compound in the solution resulted in discoloration as time passed. It was also found that hydrolysis was developed on the Silicone rubber (VMQ) compound intentionally aged under acidic condition by means of TGA, SEM, and EDS analysis.

Mechanical Properties of Polypropylene/Recycled Rubber Blends

  • Axtell, F.H.;Maiseaumsook, T.;Phinyocheep, P.
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.212-221
    • /
    • 1999
  • Mechanical properties of polypropylene filled with recycled rubber dusts obtained from the buffing process in sport shoe sole manufacture were investigated. The use of these dusts eliminates the need for the size reduction process which is usually employed in rubber recycling. Two different waxes, polypropylene wax and ethylene vinyl acetate wax, were used in the PP/rubber dust compound. Two different processes, extrusion and injection moulding, were used to study the influence of the blends on the properties. The waxes gave significant improvement in the shaping of the extrudate. It was found that the impact strength of the injection moulded samples were higher than the extruded samples and the virgin PP. The tensile properties (yield stress and modulus) were dependent on the amount of rubber dust addition. An increase in the rubber dust loading gave lower yield stress and modulus.

  • PDF

Study on the Mechanical Properties of Compounding Chopped Fiber and Rubber (슈퍼섬유 Chopped fiber와 고무와의 Compound에 따른 기계적 물성연구)

  • Lee, Jun Hee;Lee, Kwang-Woo;Byon, Young-Hoo
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.183-188
    • /
    • 2016
  • The uniformly dispersed p-Aramid chopped fiber in a variety of rubber was investigated. The cross section and surface properties in a variety of rubber were characterized by scanning electron microscopy(SEM), weight, tensile strength, cold resistance measurements. The 1mm p-Aramid chopped fiber better uniformly dispersed than the other p-Aramid chopped fiber. The p-Aramid of lmm chopped fiber showed excellent adhesion in rubber composite because of homogeneous dispersion. Consequently, the best 1mm chopped fiber and rubber improved the strength of the composite.

Surface Treatment of Transparent Conductive films and Polymer Materials (투명전도막 및 고분자 재료의 표면처리)

  • Lee, Bong-Ju;Lee, Hyun-Kyu;Chung, Soo-Bok;Lee, Kyung-Sub;Kim, Hyung-Kon;Chung, Hyoan-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.15-17
    • /
    • 2001
  • A new possibility of our atmospheric cold plasma torch has been examined on the surface treatment of an air-exposed vulcanized rubber compound. The plasma treatment effect was evaluated by the bondability with another rubber compound using a polyurethane adhesive.

  • PDF

Surface Treatment of Polymer Materials and Transparent Conductive Films

  • Lee, Bong-Ju;Lee, Kyung-Sup
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.7-10
    • /
    • 2001
  • A new possibility of our atmospheric cold plasma torch has been examined on the surface treatment of an air-exposed vulcanized rubber compound. The plasma treatment effect was evaluated by the bondability with another rubber compound using a polyurethane adhesive. The adhesion property was improved by the treatment with plasma containing oxygen radicals. The oxygen radical generation from the plasma was verified and its efficiency was found to be dependent on the cathode material.

  • PDF

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

Effects of Silica-Silane for CIIR Vibration Isolation Compound upon Increased Mechanical Properties (실리카-실란이 클로로부틸 방진고무 복합소재의 기계적 물성 증가에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.107-113
    • /
    • 2015
  • The effects of silica-silane in CIIR vibration isolation compound were investigated regarding mechanical and dynamic properties. Addition of silica-silane in the compound resulted in higher tear resistance strength and elongation at break than the control, which was increased by 13% and 14%, respectively. Other values such as tensile strength and hardness did not show significant changes. Viscoelastic property results supported that the improvement of tear resistance strength and elongation at break resulted from the formation of 3-dimensional network structure between silica and CIIR. The mechanism of the tear resistance strength and elongation at break improvement was discussed.

Cure Characteristics and Mechanical Properties of Ternary Accelerator System in NR/BR Compounds (NR/BR Compounds의 가황촉진제 병용에 의한 가황 특성 및 기계적 물성 연구)

  • Kim, Il-Jin;Kim, Wook-Soo;Lee, Dong-Hyun;Bae, Jong-Woo;Byon, Young-Hoo;Kim, Wonho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.403-409
    • /
    • 2009
  • In the 1840s, Goodyear found out sulfur cure system, but cure time was too slow. So producing of rubber product takes a long time. In 1904, Oenslager et al. found that aniline is accelerated sulfur cure system. Recently, many rubber industries needed high yield and good quality. So, many researchers have studied a rubber system with fast vulcanization time and good mechanical properties. In this study, cure characteristics and mechanical properties of NR/BR compounds by accelerator with MBTS(2,2' Dithiobisbenzothiazole), TMTM(Tetramethylthiuram Monosulfide), ZDMC (Zinc dimethyldithiocarbamate), CBS(N-Cyclohexyl benzothiazolyl-2-sulfenamide), DPG(Diphenylguanidine) were evaluated. The results of the study indicate that cure charateristics($t_{90}$: 235 sec, $T_{max}$: 5.77 Nm) and mechanical properties (100, 300% modulus : 2,180, 5.656 Mpa and tear strength: 59.58 kgf/cm) of NR/BR compounds shows efficient acceleration with MBTS 1.5 phr, TMTM 0.5 phr, DPG 0.15phr. This is due to the synergistic activity of ternary accelerator system in rubber vulcanization.