• Title/Summary/Keyword: Rubber Bush

Search Result 21, Processing Time 0.023 seconds

Estimation of Dynamic Stiffness of a Rubber Bush (고무부품의 동특성 예측)

  • Goo, Jun-Hwan;Ahn, Tae-Kil;Kim, Joo-Sung;Lee, Yong-Heon;Bae, Dae-Sung;Kim, Kee-Joo;Choi, Byung-Ik;Lee, Hak-Joo;Woo, Chang-Su;Kim, Kyung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1244-1248
    • /
    • 2009
  • Although rubber components are extensively used in mechanic parts. There are still a lot of difficulties in designing the rubber components applied in complex shapes and preloaded states because of the complicated material properties. One of the most important parameters for more detailed and accurate mechanical analysis during the development stages is the dynamic characteristics of the rubber components. It is well known that the dynamic properties of rubber are dependent on frequency as well as static preload. Consequently, a large number of experiments have to be conducted to identify the dynamic stiffness of a rubber bush considering the various applied conditions. In this paper, an efficient experimental method is suggested, which estimates the dynamic stiffness of a rubber bush using rubber material test and static stiffness of the bush. This method is capable of predicting the dynamic stiffness of a rubber bush under various load conditions from minimized test data.

A Feasibility Study on Estimation of the Deformation of Rubber Bush in Vehicles Using Acceleration and Displacement Signals on the Links (가속도계 및 변위계를 이용한 차량용 고무부시의 변형량 추정 가능성 연구)

  • Song, Seung-ho;Kim, Kwang-joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.827-835
    • /
    • 2016
  • Ride comfort of a vehicle is often determined by rubber bushes in suspension system. If transmission forces versus deformations across the bushes are available under operational conditions, improvement of the ride comfort could be done with more ease. Recently, the transmission forces are measured using custom-made force transducers inside the links. This study presents a feasibility study on estimation of the rubber bush deformations using vibration signals on the rigid links. Linear variable displacement transducers as well as piezoelectric accelerometers are used to expand frequency range to very low frequency, which cannot be done with accelerometers only. How to estimate the bush deformation from the two vibration signals on the links are presented together with experimental results.

A Study on FEM Analysis and its Endurance Evaluation of an Oil-Damper Rubber Bush for a Railway Vehicle (철도 차량용 오일댐퍼 고무부시의 유한요소해석 및 내구성 평가에 관한 연구)

  • Kim, Ho-Kyung;Park, Jin-Ho;Choi, Deok-Ho;Yang, Kyoung-Tak;Lee, Young-In
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.15-21
    • /
    • 2006
  • The railroad bogie's components experience repeated loading during service. Especially, oil damper bush has been fatigue fractured on the plane between rubber and steel stem during service, and which results in inferior of performance of the bogie. In this study, in order to offer a proper maintenance method of the bush, bubber bush used for the oil damper was fatigue tested and its damage fraction during service was estimated. Also, FEM analysis on the bush was conducted. When 1400, 1200, and 1000kgf of repeated loads were applied to the oil damper bush, final damage fraction exhibited 63.7%, 50% and 40%. From the results of FEM analysis, deformation energy density was found to be $0.5452kgf/mm^{2}$ at an applied load of 1400kgf and the location with maximum value coincided with the fractured location of the bush. Finally, it will be desirable to adopt the normalized damage fraction rather than absolute damage fraction in estimating remaining service lifetime of the bush.

Estimation of Dynamic Characteristics of a Rubber Component for Subframe in Automobile Vehicle (승용차 서브프레임용 고무부시의 동강성 예측)

  • Ahn, Tae-Kil;Goo, Jun-Hwan;Kim, Joo-Sung;Lee, Yong-Heon;Kim, Kee-Joo;Choi, Byung-Ik;Lee, Hak-Joo;Woo, Chang-Su;Kim, Kyung-Shik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.907-914
    • /
    • 2010
  • While rubber components are extensively used in automobile vehicle, there are still a lot of difficulties in designing the rubber components applied in complex shapes and preloaded states because of the complicated material properties. In this paper, an efficient experimental method is suggested, which estimates the dynamic stiffness of a rubber component using rubber material test and static stiffness of the bush. And it is verified by comparing with FEM predictions and experimental results. This method is capable of predicting the dynamic stiffness of a rubber bush under various load conditions from minimized test data. Also it estimates dynamic characteristics of a rubber component using rubber material test and FEM calculation.

Optimum Design of Rubber Injection Molding Process for the Preparation of Anti-vibration Rubber (방진고무사출성형의 적정설계)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.490-498
    • /
    • 2010
  • The optimum mold design and the optimum process condition were constructed upon executing process simulation of rubber injection molding with the commercial CAE program of MOLDFLOW(Ver. 5.2) in order to solve the process-problems of K company relating to air-traps and short-shots. The former occurs at the cavity edge of torque-rod-bush and the latter takes place for the injection molding of dynamic dampers. As a result the process problem relating to air traps was solved by optimizing edge-angle and the number of gates to prevent the flow congestion of flow-front and to make the flow-front movement unaffected by congestion. For dynamic dampers of K company the unmolded flaw caused by their unfilled cavity was corrected by installing the air-vent at the confronting locations of both upstream and downstream of flow-front where air traps frequently occur. Besides the unmolded flaws were rectified by altering the position of gate from the upper to the middle or by increasing the number of gates. Thus the process problems of K company relating to air-traps and short-shots of torque-rod-bush and dynamic dampers, respectively, were solved by proper altering of mold design with process simulation of rubber injection molding.

Effects of Interphase Condition and Short-fiber Content on the Fatigue Properties of Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 피로특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.10-17
    • /
    • 2000
  • The fatigue properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The spring constant of rubber decreased about 21% after the fatigue test. On the contrary, that of reinforced rubber increased in all cases. The changing rate of spring constant for reinforced rubber decreased with increasing fiber content. This means that the better interphase condition, the smaller changing rate of spring constant. Temperature of matrix increased about 2.5 times and one of reinforced rubber showed 1.7∼2 times up after the test. The changing rate of temperature for reinforced rubber during fatigue test decreased with increasing fiber content. It is found that the better interphase condition, the smaller changing rate of specimen temperature at the same fiber content. Double coatings of bonding agent 402 and rubber solution became the best interphase model in this study. And, we have investigated the possibility of applying short-fiber reinforced rubber to automotive engine mount rubber, bush and stopper.

  • PDF

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.

The Study on noise Analysis of Bush on Suspension System (현가계 부쉬 이상소음 분식에 관한 연구)

  • Bae, Chul-Yong;Lee, Dong-Won;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.69-74
    • /
    • 2006
  • It is known that the various noise sources which are engine, transmission, tire, intake system, etc exist at vehicle driving status. Specially noises which cannot be expected by a driver induce unpleasantness to all passengers. These noises are difficult to distinguish noise sources or specifications because of too many vehicle parts. Therefore in this paper, study on abnormal noise of bush on suspension system is performed by the measurement and analysis of the noises of bushings that are generated artificially. The measured noises are analyzed by two points-view of spectrum and sound quality. Finally, it is shown that the noise sources of bushings on the suspension system which are the pillow ball joint bush of a control arm and the rubber bush of a lower arm could be distinguished by the spectrum distribution and a index value based on tonality.

  • PDF

A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm (L 형 전륜 로어 암의 대하중 강도 해석 기법 연구)

  • Lee, Soon-Wook;Koo, Ja-Suk;Song, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF