• Title/Summary/Keyword: Ru films

Search Result 170, Processing Time 0.025 seconds

Thermal Stability of $\textrm{RuO}_2$ Thin Film Annealed at High Temperature in Oxygen Atmosphere ($\textrm{RuO}_2$ 박막의 산소 분위기 열처리시 열적 안정성에 관한 연구)

  • O, Sang-Ho;Park, Chan-Gyeong;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1090-1098
    • /
    • 1998
  • $RuO_2$ thin films were deposited on Si and Ru/Si substrates by rf magnetron reactive sputtering and annealed in oxygen atmosphere(1atm) to investigate their thermal stability and diffusion barrier property. $RuO_2$ thin films were thermally stable up to 700\ulcorner for 10min. in oxygen atmosphere and showed excellent barrier property against the interdiffusion of silicon and oxygen. After annealing at $750^{\circ}C$ , however, volatilization to higher oxide occurred at the surface and inside of $RuO_2$ thin film and diffusion barrier property was also deteriorated. When annealed at $800^{\circ}C$, $RuO_2$thin film showed a different microstructure from that of $RuO_2$ thin film annealed at 75$0^{\circ}C$. It is likely that surface defect structure of $RuO_2$, $RuO_3$, and excess oxygen had an influence on the mode of volatilization with increasing annealing temperature.

  • PDF

Electrical Properties of SrRuO3 Thin Films with Varying c-axis Lattice Constant

  • Chang, Young-J.;Kim, Jin-I;Jung, C.U.
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.61-64
    • /
    • 2008
  • We studied the effect of the variation of the lattice constant on the electrical properties of $SrRuO_3$ thin films. In order to obtain films with different volumes, we varied the substrate temperature and oxygen pressure during the growth of the films on $SrTiO_3$ (001) substrates. The films were grown using a pulsed laser deposition method. The X-ray diffraction patterns of the grown films at low temperature and low oxygen pressure indicated the elongation of the c-axis lattice constant compared to that of the films grown at a higher temperature and higher oxygen pressure. The in-plane strain states are maintained for all of the films, implying the expansion of the unit-cell volume by the oxygen vacancies. The variation of the electrical resistance reflects the temperature dependence of the resistivity of the metal, with a ferromagnetic transition temperature inferred form the cusp of the curve being observed in the range from 110 K to 150 K. As the c-axis lattice constant decreases, the transition temperature linearly increases.

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Studies on the Anodic Oxidation Behavior of Methanol and L-Ascorbic Acid by Using Glassy Carbon Electrodes Modified with Inorganic-Metal Polymeric Films (무기 금속 고분자 막을 도포시킨 유리질 탄소전극을 이용한 메탄올과 L-ascorbic acid의 양극 산화 거동에 관한 연구)

  • Yoo, Kwang-Sik;Woo, Sang-Beom
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.347-352
    • /
    • 1998
  • A study was carried out on the elelctrochemical characteristics of chemically modified electrodes (CMEs) by cyclic voltammetry. Fabrication of CMEs was made by coating with mixed valence (mv) inorganic-metal polymeric films on the glassy carbon electrode surface by potential cycling. Anodic oxidation behavior of methanol and L-ascorbic acid was studied by using CMEs working electrode. Deposition of films such as mv ruthenium oxo/ruthenium cyanide film (mv Ru-O/CN-Ru), mv ruthenium oxo/ferrocyanide film (mv Ru-O/$Fe(CN)_6$), and mv ruthenium oxo/ruthenium cyanide/Rhodium film (mv Ru-O/CN-Ru/Rh) was obtained to coat by scan rate of 50 mV/sec within the specified potential range (-0.5V ~ +1.2V). Film thickness was controlled by the repeat of the potential cycling. Anodic oxidation behavior of methanol was as follow. Calibration graph by using mv Ru-O/CN-Ru film showed linearly from 10 mM to 80 mM MeOH with slope factor of $-7.552{\mu}A/cm^2$. Although slope factor by using mv Ru-O/$Fe(CN)_6$ film was $-5.13{\mu}A/cm^2$, yet linear range of calibration graph could be extended from 10 mM to 100 mM MeOH. Anodic oxidation behavior of L-ascorbic acid was studied by mv Ru-O/CN-Ru film on the glassy carbon electrode and the glassy carbon electrode with Rh film, Glassy carbon electrode modified with Ru polymeric film was showed better sensitivity than the Rh-glassy carbon modified electrode (mv Ru-O/CN-Ru/Rh). Calibration graph was linear from 0.1 mM to 5 mM L-ascorbic acid by using glassy carbon electrode modified with Ru polymeric film. Solpe factor and relative coefficient are $-84.78{\mu}A/mM$ and 0.998, respectively.

  • PDF

Structure and Electrical Properties of $Ru_{1-x}Ir_xO_2$ Films Deposited by a Spray Phrolysis (분무열분해법으로 성장한 $Ru_{1-x}Ir_xO_2$ 박막의 구조와 전기적 특성)

  • 서동주;이관교;이재연
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.67-72
    • /
    • 1996
  • $RU_{1-x}Ir_xO_2$ films were deposited on the quartz substrate by a spray pyrolysis method. The x-ray diffraction patterns showed that the structure of the $RU_{1-x}Ir_xO_2$ film was tetragonal and the lattice constant $a_o$ and $c_o$ were increased from 4.495 A to 4.058 A and from 3.092A to 3.156 A, respectively as the Ir composition varied from 0.0 to 1.0. The $RU_{1-x}Ir_xO_2$ film was metallic and the resistivity of the samples was increased from $7{\times}10^{-5}{\Omega}\textrm{cm}$ to $48{\times}10^{-5}{\Omega}\textrm{cm}$ with increasing the Ir x. The surface of the sample was slightly roughed, the grain size and the grain boundary width were increased as the Ir composition varied from 0.0 to 1.0.

  • PDF

The characteristics of $(Ba_{0.5}Sr_{0.5})TiO_3$ thin films deposited on $RuO_2$ bottom electrodes ($RuO_2$하부전극상에 증착된 $(Ba_{0.5}Sr_{0.5})TiO_3$박막의 특성)

  • 백수현;박치선;마재평
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.407-410
    • /
    • 1998
  • The characteristics of $(Ba,Sr)TiO_3$[BST] thin films with the variation of $O_2/Ar$ ratio in sputtering gas deposited on $RuO_2$ bottom electrode were investigated. Dielectric constant of BST film increases from 135 to 190 with increasing oxygen partial pressure from 10 to 50, which is mainly due to the improved crystallinity of BST film. The instability of $RuO_2$ surface in $BST/RuO_2$ interface and the increase in the surface roughness of BST thin films with higher $O_2/Ar$ ratio appeared to play an important roles on the degradation of the leakage current characteristics of $Al/BST/RuO_2$ capacitor with various $O_2/Ar$ ratio in sputtering gas. As a consequence, the leakage current of BST thin film showed the lowest value of $1.9{\times}10^{-7}\; A/{\textrm}{cm}^2$ at $O_2/Ar{\approx}1/9$.

  • PDF

Structural and Electrical Properties of SrRuO3 thin Film Grown on SrTiO3 (110) Substrate

  • Kwon, O-Ung;Kwon, Namic;Lee, B.W.;Jung, C.U.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.39-42
    • /
    • 2013
  • We studied the structural and electrical properties of $SrRuO_3$ thin films grown on $SrTiO_3$ (110) substrate. High resolution X-ray diffraction measurement of the grown film showed 1) very sharp peaks for $SrRuO_3$ film with a very narrow rocking curve with FWHM = $0.045^{\circ}$ and 2) coherent growth behavior having the same in-plane lattice constants of the film as those of the substrate. The resisitivity data showed good metallic behavior; ${\rho}$ = 63(205) ${\mu}{\Omega}{\cdot}cm$ at 5 (300) K with a residual resistivity ratio of ~3. The observed kink at ${\rho}(T)$ showed that the ferromagnetic transition temperature was ~10 K higher than that of $SrRuO_3$ thin film grown on $SrTiO_3$ (001) substrate. The observed rather lower RRR value could be partially due to a very small amount of Ru vacancy generally observed in $SrRuO_3$ thin films grown by PLD method and is evident in the larger unit-cell volume compared to that of stoichiometric thin film.

Fabrication and Physical Properties of $RuO_2$ Thin Films ($RuO_2$ 박막의 제조와 물성)

  • 서동주;이재연;김건호
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.4
    • /
    • pp.442-448
    • /
    • 1994
  • 용액분무법으로 RuO2 박막을 석영 기판위에 성장시켰다. RuO2 박막의 결정구조는 정방 구조이 며 격자상수 a0=4.508 A, c0=3.092 A 이였다. RuO2 박막은 금속성 전도성을 나타냈다. RuO2박마의 광흡 수도는 후열처리함에 따라 증가하였고 박막의 광흡수도의 최소값은 후열처리 온도에 의존하지 않으며 에너지로 환산하면 ∼2.0eV로 거의 일정하였다. RuO2 박막의 후열처리의 온도와 후열처리 분위기가 기 판위에 성장된 RuO2 박막의 표면형태 grain 크기 grain 경계폭 전기적특성등에 영향을 미쳤다. RuO2 박 막이 실험실내의 공기중에 노출됨으로서 시료의 표면에 S와 C가 물리 흡착되었으며 sputtering 시간이 증가함에 따라 Ar+ 이온 빔의 충겨으로 RuO2가 부분적으로 환원되어 O원자의 피크 대 피크 높이가 감 소하여 O/Ru 의피크 높이의 비가 낮게 관측되었다.

  • PDF

Optimization of PEALD-Ru Process using Ru(EtCp)2 (Ru(EtCp)2 전구체를 이용한 PEALD Ru 공정 최적화에 관한 연구)

  • Kwon, Se-Hun;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • Ru films were successfully prepared by plasma-enhanced atomic layer deposition (PEALD) using $Ru(EtCp)_2$ and $NH_3$ plasma. To optimize Ru PEALD process, the effect of growth temperature, $NH_3$ plasma power and $NH_3$ plasma time on the growth rate and preferred orientation of the deposited film was systemically investigated. At a growth temperature of $270^{\circ}C$ and $NH_3$ plasma power of 100W, the saturated growth rate of 0.038 nm/cycle was obtained on the flat $SiO_2$/Si substrate when the $Ru(EtCp)_2$ and $NH_3$ plasma time was 7 and 10 sec, respectively. When the growth temperature was decreased, however, an increased $NH_3$ plasma time was required to obtain a saturated growth rate of 0.038 nm/cycle. Also, $NH_3$ plasma power higher than 40 W was required to obtain a saturated growth rate of 0.038 nm/cycle even at a growth temperature of $270^{\circ}C$. However, (002) preferred orientation of Ru film was only observed at higher plasma power than 100W. Moreover, the saturation condition obtained on the flat $SiO_2$/Si substrate resulted in poor step coverage of Ru on the trench pattern with an aspect ratio of 8:1, and longer $NH_3$ plasma time improved the step coverage.