Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.1.039

Structural and Electrical Properties of SrRuO3 thin Film Grown on SrTiO3 (110) Substrate  

Kwon, O-Ung (Department of Physics, Hankuk University of Foreign Studies)
Kwon, Namic (Department of Physics, Hankuk University of Foreign Studies)
Lee, B.W. (Department of Physics, Hankuk University of Foreign Studies)
Jung, C.U. (Department of Physics, Hankuk University of Foreign Studies)
Publication Information
Abstract
We studied the structural and electrical properties of $SrRuO_3$ thin films grown on $SrTiO_3$ (110) substrate. High resolution X-ray diffraction measurement of the grown film showed 1) very sharp peaks for $SrRuO_3$ film with a very narrow rocking curve with FWHM = $0.045^{\circ}$ and 2) coherent growth behavior having the same in-plane lattice constants of the film as those of the substrate. The resisitivity data showed good metallic behavior; ${\rho}$ = 63(205) ${\mu}{\Omega}{\cdot}cm$ at 5 (300) K with a residual resistivity ratio of ~3. The observed kink at ${\rho}(T)$ showed that the ferromagnetic transition temperature was ~10 K higher than that of $SrRuO_3$ thin film grown on $SrTiO_3$ (001) substrate. The observed rather lower RRR value could be partially due to a very small amount of Ru vacancy generally observed in $SrRuO_3$ thin films grown by PLD method and is evident in the larger unit-cell volume compared to that of stoichiometric thin film.
Keywords
$SrRuO_3$; thin film; PLD; polar substrate; resistivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. W. Lee and C. U. Jung, Appl. Phys. Lett. 96, 102507 (2010).   DOI   ScienceOn
2 W. Hong, H. N. Lee, M. Yoon, H. M. Christen, D. H. Lowndes, Z. Suo, and Z. Zhang, Phys. Rev. Lett. 95, 095501 (2005).   DOI   ScienceOn
3 A. P. Mackenzie, J. W. Reiner, A. W. Tyler, L. M. Galvin, S. R. Julian, M. R. Beasley, T. H. Geballe, and A. Kapitulnik, Phys. Rev. B 58, R13, 318 (1998).
4 L. Klein, J. S. Dodge, C. H. Ahn, J. W. Reiner, L. Mieville, T. H. Geballe, M. R. Beasley, and A. Kapitulnik, J. Phys.: Condens. Mater 8, 10111 (1996).   DOI   ScienceOn
5 Q. Gan, R. A. Rao, C. B. Eom, J. L. Garrett, and Mark Lee, Appl. Phys. Lett. 72, 978 (1998).   DOI   ScienceOn
6 B. W. Lee and C. U. Jung J. Kor. Phys. Soc. 6, 795 (2012).
7 C. U. Jung, H. Yamada, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 84, 2590 (2004).   DOI   ScienceOn
8 B. W. Lee and C. U. Jung, J. Kor. Phys. Soc. 59, 322 (2011).   DOI   ScienceOn
9 M. A. Lopez de la Torre, Z. Sefroui, D. Arias, M. Varela, J. E. Villegas, C. Ballesteros, C. Leon, and J. Santamaria, Phys. Rev. B 63, 052403 (2001).   DOI   ScienceOn
10 M. Yoon, H. N. Lee, W. Hong, H. M. Christen, Z. Zhang, and Z. Suo, Phys. Rev. Lett. 99, 055503 (2007).   DOI
11 W. Siemons, G. Koster, A. Vailionis, H. Yamamoto, D. H. A. Blank, and M. R. Beasley, Phys. Rev. B 76, 075126 (2007).   DOI   ScienceOn
12 G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C. B. Eom, D. H. A. Blank, and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012).   DOI