• 제목/요약/키워드: Ru$(bpy)_{3}$$^{2+}$

검색결과 42건 처리시간 0.02초

Mechanistic Studies on the Oxidation of Triphenylphosphine by $[(tpy)(bpy)Ru^{IV}=O]^{2+}$, Structure of the Parent Complex $[(tpy)(bpy)Ru^{II}-OH_2]^{2+}$

  • 석원경;김미영;Yoshinobu Yokomori;Derek J. Hodgson;Thomas J. Meyer
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권7호
    • /
    • pp.619-624
    • /
    • 1995
  • Oxidation of triphenylphosphine to triphenylphosphine oxide by [(tpy)(bpy)Ru(O)]2+ (tpy is 2,2':6',2"-terpyridine and bpy is 2,2'-bipyridine) in CH3CN has been studied. Experiments with the 18O-labeled oxo complex show that transfer of oxygen from [(tpy)(bpy)RuⅣ=O]2+ to triphenylphosphine is quantitative within experimental error. The reaction is first order in each reactant with k (25.3 ℃)=1.25 × 106 M-1s-1. The inital product, [(tpy)(bpy)RuⅡ-OPPh3]2+, is formed as an observable intermediate and undergoes slow k (25 ℃)=6.7 × 10-5 s-1 solvolysis. Activation parameters for the oxidation step are ΔH≠=3.5 kcal/mol and ΔS≠=-23 eu. The geometry at ruthenium in the complex cation, [(tpy)(bpy)RuⅡ(OH2)]2+, is approximately octahedral with the ligating atoms being the three N atoms of the tpy ligand, the two N atoms of the bpy ligand, and the oxygen atom of the aqua ligand. The Ru-O bond length is 2.136(5) Å.

Novel Effects of Polyelectrolytes on Fluorescence Quenching of Tris(2,2$^\prime$-bipyridine)ruthenium(Ⅱ) by Methyl Viologen and Cu$^{2+}$

  • Park, Joon-Woo;Paik, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권5호
    • /
    • pp.287-291
    • /
    • 1985
  • The addition of poly(styrenesulfonate) (PSS) to $Ru(bpy)_3^{2+}$ solutions shifted the emission peak by 3 nm to red, and increased emission intensity by 1.8 times. By contrast, poly(vinylsulfonate) (PVS) had little effect on the fluorescence spectrum. The effects of PSS on the spectral properties of $Ru(bpy)_3^{2+}$, were attributed to the presence of a hydrophobic phenyl group in PSS, which interact with $Ru(bpy)_3^{2+}$ by, at least in part, hydrophobic effect. The binding constant of $Ru(bpy)_3^{2+}$ to PSS in 0.1 M NaCl was $6{\times}10^4\;M^{-1}$, and this value was about $10^3$ times higher than those of methyl viologen ($MV^{2+}$) and $Cu^{2+}$. The Stern-Volmer constants of emission quenching of $Ru(bpy)_3^{2+}$ by $MV^{2+}$ and $Cu^{2+}$ in 0.1 M NaCl solutions were 426 and 40 $M^{-1}$, which correspond to second order rate constants($k_q$) of $1.1{\times}10^9\;and\; 1.0{\times}10^8\;M^{-1}s^{-1}$, respectively. The presence of PSS enhanced $K_{SV's}\;by\;{\sim}50$ times, whereas PVS increased the values only 1-4 times. The large enhancing effect of PSS, despite of lower charge density than PVS, was explained in terms of longer life-time of photoexcited $Ru(bpy)_3^{2+}$ bound to PSS and strong association of $Ru(bpy)_3^{2+}$ to PSS due to a specific interaction involving hydrophobic effect. The variation of $K_{SV's}$ on the concentrations of PVS and PSS were also investigated for $Ru(bpy)_3^{2+}-MV^{2+}\;and \;Ru(bpy)_3^{2+}-Cu^{2+}$ photoredox systems.

Syntheses and Reactivites with Olefins of Ruthenium(IV) Oxo/Ruthenium(II)-Aqua Complexes that Contain 2,6-Bis(N-pyrazolylpyridine)

  • Jo, Du-Hwan;Yeo, Hwan-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권6호
    • /
    • pp.682-686
    • /
    • 1993
  • The syntheses and reactivities with olefins of $[Ru^{II}(L_3)(L_2)OH_2]^{2+}$ $[L_3$= 2,6-bis(N-pyrazolyl)pyridine(bpp), 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine $(Me_4bpp);\;L_2$= 2,2'-bipyridine(bpy), 4,4'-dimethyl-2,2'-bipyridine $(Me_2bpy)$] are described. Their spectral and redox properties in aqueous solution were investigated. Evidence for each one electron redox process for the $Ru^{IV}-Ru^{III}$ and $Ru^{III}-Ru^{II}$ couples has been obtained. Oxidation of $[Ru^{II}(bpp)(bpy)OH_2]^{2+}$ with $Ce^{IV}$ gave $[Ru^{IV}(bpp)(bpy)O]^{2+}$. The $[Ru^{IV}$= 0 complex is paramagnetic $({\mu}_{eff}=2.82)$ and the complexes $[Ru(L_3)(L_2)OH_2]^{2+}$ are robust catalysts for the oxidation of styrene, cyclohexene, and cyclooctene with cooxidant such as NaOCl. Product distributions and selectivities are discussed by varying the number of the substituted-methyl group in the ring.

OLED Dye를 찾기 위한 Ru(bpy)32+의 효율적인 에너지 계산

  • 조영범;손문기;신석민
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.251-262
    • /
    • 2014
  • 최근 유기 발광 다이오드(Organic Light Emitting Diodes; OLED)가 각광받고 있어 이를 개발하기 위한 좀 더 효율적이고 실용적인 OLED 구조의 예측이 필요해지고 있다. 본 연구는 가장 기초적인 OLED dye의 형태인 $Ru(bpy){_3}^{2+}$와 그와 유사한 구조의 발광 물질이 전기화학발광(ECL) 현상을 통해 방출하는 빛의 특성을 계산하는 것을 목적으로 한다. EDISON 화학 서버의 GAMESS 프로그램을 사용하여 $Ru(bpy){_3}^{2+}$와 유도체들의 바닥상태(ground state)와 첫 번째 들뜬 상태(first excited state)를 계산하였다. Basis set으로는 MINI와 3-21G 혹은 SBKJC를 사용하였다. 들뜬 상태 계산은 configuration interaction with single excitation(CIS)을 이용하여 단일항(singlet)과 삼중항(triplet) 상태에서 바닥과 들뜬 상태의 최적 구조에 대한 계산을 수행하였다. 다양한 방법으로 방출 파장을 계산한 결과를 바탕으로 $Ru(bpy){_3}^{2+}$와 다양한 유도체들의 에너지 계산에 어떤 방법이 효율적으로 적용될 수 있을지 탐색하였다. 같은 계산방법들이 중심 금속이 이리듐(Ir)인 분자에도 적용이 될 수 있을지 알아보기 위해 $lr(mppy)_3$에도 적용하였다. 본 연구를 통하여 얻어진 방식은 시간을 절약하고 더 효율적인 $Ru(bpy){_3}^{2+}$ 유도체 계산에도 사용할 수 있을 것이다.

  • PDF

Dopamine으로 수식된 [Ru(v-bpy)$_3$$^{2+}$와 Vinylbenzoic Acid의 공중합 피막 전극의 전기화학 특성 (Electrochemical Characteristics at Copolymeric film Electrodes of [Ru(v-bpy)$_3$]$^{2+}$ and Vinylbenzoic Acid Modified with Dopamine)

  • 차성극;박유철;임태곤
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.782-788
    • /
    • 2001
  • $[Ru(v-bpy)_3]^{2+}$와 vinylbenzoic acid(vba)의 공중합 피막전극에 dopamine을 반응시켜 수식된 전극을 제작하고 이 고분자의 중합속도와 산화-환원 및 전자전달 특성을 연구하였다. 두 단량체의 몰비가 5:2일 때 공중합속도 상수는 $1.84{ imes}10^{-2}s^{-1}$이고 중합된 피막상에서 두 성분비는 5:1.68이였다. GC/p-$[Ru(V-bpy)_3]^{2+}$/vba-dopamine형의 수식된 전극에서 hydroquinone=quinone+$2H^+2e^-$의 전극반응에 의한 형식전위는 인산염완충용액(pH=7.10)에서 0.17 V이며, 전기촉매반응에서 속도상수($K_{ch}{Gamma}$)는 $2.58{ imes}10^5cms^{-1}$로서 수식되기 전보다 2.41배 큰 값이다. EQCM법에 의한 산화-환원과정에서 질량변화는 수식되기 전보다 $3.28{ imes}10^3$$gmol^{-1}$ 더 크다.

  • PDF

수식된 $[Ru(v-bpy)_3]^{2+}$ 고분자 피막전극을 이용한 U(VI)의 정량 (Quantitative Determination of $UO2^{2+}$ with Modified $[Ru(v-bpy)_3]^{2+}$ Polymer Film Electrode)

  • 차성극
    • 대한화학회지
    • /
    • 제44권1호
    • /
    • pp.17-23
    • /
    • 2000
  • 전기화학적으로 중합한 $[Ru(v-bpy)_3]^{2+}$의 다가 양이은성 고분자 피막전극을 $PF6^-/ClO_4^-$대이온의 비가 1:1 정도 되게 한 후에 우라늄과의 착물의 안정도상수가 각각 38.6과 17.5인 xylenoI orange와 diethyldithiocarbamate로 변성한 전극을 제작하였다. 이를 이용하여 용액중의 U(VI)을 정량할 수 있는 여러 회 사용이 가능한 전극을 제작하였다. 이 때에 분석용 신호를 얻기 위한 전극은 Pt/p-$[Ru(v-bpy)_3]^{2+}$, ligand, U(VI)이며 염화은 기준전극을 사용하였다. 벗김전압전류 과정에서는 전자전달이 지배적인 과정이었으며, 검정선은 $1.0{\times}10^{-3}{\sim}1.0{\times}10^{-7}$ M 범위에서 0.99의 좋은 상관관계와 5${\sim}$8%의 상대 표준편차를 나타냈다.

  • PDF

Comparison of the Binding Modes of [Ru(2,2'-bipyridine)3]2+ and [Ru(2,2':6',2"-terpyridine)2]2+ to Native DNA

  • Jang, Yoon-Jung;Lee, Hyun-Mee;Jang, Kyeung-Joo;Lee, Jae-Cheol;Kim, Seog-K.;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1314-1318
    • /
    • 2010
  • The $[Ru(tpy)_2]Cl_2$ (tpy:2,2':6',2"-terpyridine) complex was synthesized and its structure was confirmed by $^1H$-NMR and elemental analysis. Its binding mode toward DNA was compared with the well-known $[Ru(bpy)_3]Cl_2$ (bpy:2,2-bipyridyl), using isotropic absorption, linear dichroism(LD) spectroscopy, and an energy minimization study. Compared to $[Ru(bpy)_3]^{2+}$, the $[Ru(tpy)_2]^{2+}$ complex exhibited very little change in its absorption pattern, especially in the MLCT band, upon binding to DNA. Furthermore, upon DNA binding, both Ru(II) complexes induced a decrease in the LD magnitude in the DNA absorption region. The $[Ru(tpy)_2]^{2+}$ complex produced a strong positive LD signal in the ligand absorption region, which is in contrast with the $[Ru(bpy)_3]^{2+}$ complex. Observed spectral properties led to the conclusion that the interaction between the ligands and DNA bases is negligible for the $[Ru(tpy)_2]^{2+}$ complex, although it formed an adduct with DNA. This conclusion implies that both complexes bind to the surface of DNA, most likely to negatively charged phosphate groups via a simple electrostatic interaction, thereby orienting to exhibit the LD signal. The energy minimization calculation also supported this conclusion.

Preparation and Photophysical Properties of 4-(9-Anthrylethenyl)-4'-methyl-2,2'-bipyridine and Its Ruthenium Bipyridyl Complex $[Ru(bpy)_2(t-aemb)](PF_6)_2$

  • 배은영;신은주
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.86-93
    • /
    • 1998
  • Trans-4-(9-anthrylethenyl)-4'-methyl-2,2'-bipyridine(t-aemb) and its bipyridyl Ru complex $[Ru(bpy)_2(t-aemb)](PF_6)_2$ (bpy=2,2'-bipyridine) 1 have been prepared and their excited state properties have been studied. t-Aemb exhibits solvent-dependent fluorescence and efficient trans→cis photoisomerization. 1 shows very weak fluorescence and its photochemically reactive. Fluorescence is wavelength-dependent. While the excitation into the MLCT band makes the complex fluorescent, direct absorption by the t-aemb ligand leads to the photoreaction of t-aemb ligand and no fluorescence is observed. 1 is considered to behave in part as bichromophoric molecule in which $[Ru(bpy)_3](PF_6)_2$ and anthryl group are covalently linked by ethenyl linkage. Because anthryl moiety is not effectively conjugated with bipyridylethenyl moiety due to steric hindrance, weak fluorescence can be explained due to the efficient energy or electron transfer.

Artificial Photosynthesis Using Zeolites

  • Castagnola, Norma B.;Dutta, Prabir K.
    • Journal of Photoscience
    • /
    • 제6권3호
    • /
    • pp.91-96
    • /
    • 1999
  • Zeolites and microporouos materials continue to attract attention as novel hosts for photochemical reactions. Zeolities are attractive because of their ability to selectivity exchange and incorporate species within the void spaces and interconnecting channels, providing a spatial arrangement of molecules. Our research has primarily focused on intrazeolitic electron transfer from excited Ru(bpy)32+ in supercages of zeolite Y to a series of bipyridinium ions. In the Ru(bpy)32+ viologen-zeolite Y samples, the slowing of the back electron transfer from the bipyridinium radical cation to Ru(bpy)32+ allows for charge propagation via self exchange between diquat molecules. This provides an opportunity for permanent charge separation. When the migrating charge on the diquat radical within the zeolite reaches the surface, it can be transferred to a neutral viologen (PVS) in solution, resulting in permanent charge separation. The advantage of long-lived charge separation can be exploited for useful chemistry if suitable catablysts can be assembled on the zeolities. We have studied Ru(bpy)2 as water oxdiation catalysts. We have demonstrated that synthesis of RuO2 fibers on a zeolite via thermal decomposition of Ru3(CO)12 leads to the most active water decomposition catalyst reported to date. Because of the extensive interest of photochemical water reduction to H2, much is known about catalytic systems usin gone electron catalyst, and even more importantly, that no reaction of viologen occurred with H2 over this catalyst. The present challenge is to incorporate all these elements of the system into an architecture and we are examining zeolite membranes for this purpose.

  • PDF