• Title/Summary/Keyword: Routing protocols

Search Result 608, Processing Time 0.021 seconds

Topology Design Optimization for Improving Fail-over Performance in Wired Mesh Network (유선 메시 구조에서의 절체 성능 향상을 위한 네트워크 설계 기법)

  • Hwang, Jongsu;Jang, Eunjeong;Lee, Wonoh;Kim, Jonghyeok;Kim, Heearn
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.165-175
    • /
    • 2019
  • Networks use relatively slow heartbeat mechanisms, usually in routing protocols, to detect failures when there is no hardware signaling to help out. The time to detect failures available in the existing protocols is no better than a second, which is far too long for some applications and represents a great deal of lost data at 10 Gigabit rates. We compare the convergence time of routing protocol applying Bidirectional Forwarding Detection (BFD) protocol in wired mesh network topology. This paper suggests the combinations of protocols improving fail-over performance. Through the performance analysis, we contribute to reduce convergence time when system is fail-over.

Improvement of LECEEP Protocol through Dual Chain Configuration in WSN Environment(A-LECEEP, Advanced LEACH based Chaining Energy Efficient Protocol) (WSN 환경에서 이중체인 구성을 통한 LECEEP 프로토콜 개선(A-LECEEP))

  • Kim, Chanhyuk;Kwon, Taewook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1068-1075
    • /
    • 2021
  • Wireless sensor network (WSN) can be usefully used in battlefields requiring rapid installation and operation by enabling surveillance and reconnaissance using small sensors in areas where any existing network infrastructure is not formed. As WSN uses battery, energy efficiency acts as a very important issue in network survivability. Layer-based routing protocols have been studied a lot in the aspect of energy efficiency. Many research selected LEACH and PEGASIS protocols as their comparison targets. This study examines the two protocols and LECEEP, a protocol designed by combining their advantages, and proposes a new protocol, A-LECEEP, which is more energy efficient than the others. The proposed protocol can increase energy efficiency compared to the existing ones by eliminating unnecessary transmissions with multiple chains configuration.

A Study of Wireless Sensor Network Routing Protocols for Maintenance Access Hatch Condition Surveillance

  • Lee, Hoo-Rock;Chung, Kyung-Yul;Jhang, Kyoung-Son
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.237-246
    • /
    • 2013
  • Maintenance Access Hatches are used to ensure urban safety and aesthetics while facilitating the management of power lines, telecommunication lines, and gas pipes. Such facilities necessitate affordable and effective surveillance. In this paper, we propose a FiCHS (Fixed Cluster head centralized Hierarchical Static clustering) routing protocol that is suitable for underground maintenance hatches using WSN (Wireless Sensor Network) technology. FiCHS is compared with three other protocols, LEACH, LEACH-C, and a simplified LEACH, based on an ns-2 simulation. FiCHS was observed to exhibit the highest levels of power and data transfer efficiency.

Efficient Flooding in Link-State Routing Protocols (링크상태 라우팅 프로토콜의 효율적인 플러딩)

  • Park, Moosung;Rhee, Seung-Hyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.326-328
    • /
    • 2014
  • In this paper we propose an efficient algorithm for LSA(Link State Advertisements) flooding. Link state routing protocols have been widely adopted in wired networks. When link state change occurs, a LSA is flooded into the whole network. The overhead of LSA flooding may be a big problem in wireless networks because their link states can be changed frequently. We propose an efficient flooding method that optimizes the flooding processes in wireless networks.

TCP Performance Improvement Considering ACK Loss in Ad Hoc Networks

  • Kim, Dong-Kyun;Yoo, Hong-Seok
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.98-107
    • /
    • 2008
  • In mobile ad hoc networks, packet loss is unavoidable due to MAC contention, link failure or the inherent characteristics of wireless link. Since TCP relies on the timely reception of TCP ACK packets to progress the transmission of the TCP DATA packets, ACK loss obviously affects the performance due to two main problems: (a) Frequent occurrence of spurious retransmissions caused by timeout events and (b) impairment of the fast retransmit mechanism caused by the lack of a sufficient number of duplicate ACK packets. In particular, since most reactive routing protocols force the packets buffered over a path to be discarded while performing a route recovery, the performance degradation becomes more serious due to such ACK loss. In this paper, therefore, TCP with two piggybacking schemes (called TCP-pgy) is proposed in order to resolve the above-mentioned problems over reactive routing protocols. Through extensive simulations using the ns-2 simulator, we prove that our proposed schemes contribute to TCP performance improvements.

Performance Analysis of MANET Routing Protocols with Various Data Traffic (다양한 데이터 트래픽을 갖는 이동 애드혹 네트워크용 라우팅 프로토콜의 성능 분석)

  • Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • MANET(Mobile Ad Hoc Network) is the structure in which a source node communicates with a destination node by establishing a route with neighbor nodes without using the existing wired or wireless network. Therefore, the routing protocol for MANET must correspond well to changes in the channel state of moving nodes, and should have simple operation, high reliability, and no routing loop. In this paper, the simulation was perform by using a traffic model with on/off two states provided by the NS-3 network simulator. Also, the duration of the ON state and the duration of the OFF state used the traffic where inter arrival time of data is irregular by generating random values with constant, exponential distribution, and Pareto distribution. The performance of the DSDV, OLSR, and AODV protocols was compare and analyzed using the generated traffic model.

Design and Implementation of Cluster based Routing Protocol using Representative Path in Ubiquitous Sensor Network (무선 센서네트워크에서 대표경로를 이용한 클러스터기반 라우팅 프로토콜의 설계 및 구현)

  • Jang, You-Jin;Kim, Ah-Reum;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.91-105
    • /
    • 2010
  • A wireless sensor network communication technique has been broadly studied with continuous advances in ubiquitous computing environment. Especially, because the resource of the sensor node is limited, it is important to reduce the communication energy by using an energy-efficient routing protocol. The existing cluster-based routing protocols have a problem that they cannot select a cluster head efficiently by randomly choosing a head. In addition, because the existing cluster-based routing protocols do not support the large scale of network, they cannot be used for various applications. To solve the above problems, we, in this paper, propose a new cluster-based routing protocol using representative paths. The proposed protocol constructs an efficient cluster with distributed cluster heads by creating representative paths based on hop count. In addition, a new routing protocol supports multi-hop routing for data communication between a cluster member node and a cluster head as well as between cluster heads. Finally, we show that our protocol outperforms LEACH and Multihop-LEACH in terms of reliability and scalability.

Performance Evaluation of Directional AODV Routing Protocol for Wireless Mesh Networks (무선 메쉬 네트워크를 위한 방향섬 AODV 라우팅 프로토콜의 성능 평가)

  • Choi, Jae-In;Kim, Dae-Hwan;Le, Anh Ngoc;Lee, In-Soo;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.795-801
    • /
    • 2008
  • Wireless Mesh Networks (WMNs) are popular due to their low cost and rapid deployment. Currently, many WMN researchers often considers the use of ad-hoc routing protocols because WMNs are similar to the ad-hoc networks. Some of currently deployed WMNs consider to use on-demand routing protocols such as Ad-hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR). But, AODV are not appropriate for Wireless Mesh Networks (WMNs), because flooding-based route discovery is both redundant and expensive in terms of control message overhead. In this paper, we propose a directional AODV (D-AODV) routing protocol based on hop count to a gateway. We implement the D-AODV routing protocol and evaluate the performance of the D-AODV on the testbed. The measurement results show that the D-AODV can enhance the network throughput by reducing the routing overhead.

A Delay Tolerant Vehicular Routing Protocol for Low Vehicle Densities in VANETs (차량 밀도가 낮은 VANET 환경을 위한 지연 허용 차량 라우팅 프로토콜)

  • Cha, Si-Ho;Ryu, Min-Woo;Cho, Kuk-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.82-88
    • /
    • 2012
  • A VANET (Vehicular Ad Hoc Network), a subclass of MANET (Mobile Ad Hoc Network), is an ad hoc network using wireless communication between vehicles without fixed infrastructure such as base station. VANET suffers a frequent link breakage and network topology change because of the rapid movement of vehicles and the density change of vehicles. From these characteristics of VANET, geographical routing protocols such as GPSR (Greedy Perimeter Stateless Routing) using only the information of neighbor nodes are more suitable rather than AODV and DSR that are used in existing MANETs. However, GPSR may have a transmission delay and packet loss by frequent link disconnection and continual local maxima under the low vehicle density conditions. Therefore, in this paper, we propose a DTVR (Delay Tolerant Vehicular Routing) algorithm that perform a DTN-based routing scheme if there is no 2-hop neighbor nodes for efficient routing under the low vehicle densities in VANETs. Simulation results using ns-2 reveal that the proposed DTVR protocol performs much better performance than the existing routing protocols.

Selective On-demand Zone Routing Protocol for Large Scale Mobile Ad-hoc Networks (대규모 Ad-hoc 네트워크 환경에서 트래픽 감소를 위한 선택적 on-demand 라우팅 기법에 관한 연구)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.443-452
    • /
    • 2012
  • In Mobile Ad-hoc Networks, previous routing protocols classified into proactive and reactive approach respectively have pros and cons under the use of applications and environment. Moreover, to integrate their advantages in case by case, hybrid approach is consistently researched, and Zone Routing Protocol (ZRP) was motivating many recent hybrid protocols. ZRP uses proactive routing to the node located within the zone defined by the specific number of hops, while it uses reactive routing to other nodes. However, in ZRP, because proactive routing is applied only within the zone defined by the number of hops, the zone is formed regardless of whether real data communication occurred frequently or not. In this paper, we propose a new hybrid routing scheme which employs the zone method but forms customized zone considering traffic load and number of hops, by a new decision method named Dynamic Zone Decision (DZD). Additionally, we analyze the performance of the proposed scheme, comparing with the previous proactive, reactive, and hybrid routings.