• Title/Summary/Keyword: Route risk

Search Result 236, Processing Time 0.021 seconds

A Study for Technique of Detecting the Real-time Route Aberrance in the Passage Route Using Ship's Domain Theory

  • Gang, Sang-Guen
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.273-278
    • /
    • 2017
  • This paper is to study a technique to detect the real-time route aberrance on the passage route using bumper area of the ship domain theory. In order to evaluate the risk of route aberrance, a quarter line was created between the center line and the outer line, and a passage route with the image line outside the outer line was designed. It calculated the real-time route aberrance with the vessel bumper area to measure the risk level on the passage route. The route aberrance using overlap bumper area was simulated through three kinds of scenario vessel at the designed passage route. In this paper, we proposed Ratio to Aberrance Risk as one of the evaluation parameter to detect the route aberrance risk at each sector in the passage route and to give the evaluation criteria of 5 levels for seafarer's navigation safety. The purpose of this work is to provide the information of the route aberrance to seafarer automatically, to make it possible to prevent the human errors of seafarer on the high risk aberrance route. As the real-time risk of route aberrance on the passage route is automatically evaluated, it was well thought that seafarer can have only a little workload in order to know the risk of route aberrance at early-time. Following the further development of this work, the techniques for detecting the real-time route aberrance will be able to use the unmanned vessel.

A Study on Intuitive Technique of Risk Assessment for Route of Ships Transporting Hazardous and Noxious Substance

  • Jeong, Min-Gi;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • Despite the development of safety measures and improvements in preventive systems technologies, maritime traffic accidents that involve ships carrying hazardous and noxious substances (HNS) continuously occur owing to increased amount of HNS goods transported and the growing number of HNS fleet. To prevent maritime traffic accidents involving ships carrying HNS, this study proposes an intuitive route risk assessment technique using risk contours that can be visually and quantitatively analyzed. The proposed technique offers continuous information based on quantified values. It determines and structures route risk factors classified as absolute danger, absolute factors, and influential factors within the assessment area. The route risk is assessed in accordance with the proposed algorithmic procedures by means of contour maps overlaid on electronic charts for visualization. To verify the effectiveness of the proposed route risk assessment technique, experimental case studies under various conditions were conducted to compare results obtained by the proposed technique to actual route plans used by five representative companies operating the model ship carrying HNS. This technique is beneficial not only for assessing the route risk of ships carrying HNS, but also for identifying better route options such as recommended routes and enhancing navigation safety. Furthermore, this technique can be used to develop optimized route plans for current maritime conditions in addition to future autonomous navigation application.

Development of Disaster Risk Analysis System for Environment Friendly Road (친환경 도로노선의 재해위험도 평가시스템 개발)

  • Song, Min-Tae;Kang, Ho-Geun;Kim, Heung-Rae;Lee, Tae-Ock;Lee, Han-Joo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.123-132
    • /
    • 2012
  • PURPOSES: This study is to investigate the consideration which relates with a disaster from route alignment process and proposed the method it will be able to evaluate a disaster danger fixed quantity. METHODS: Use the landslide disaster probabilistic map of GIS based and in about landslide occurrence of the route alignment at the time of neighboring area after evaluating a risk fixed quantity, it compared LCC expense in about each alternative route. It developed the system it will be able to analyze a LCC and a disaster risk in about the alternative route. In order to verify a risk analytical algorithm and the system which are developed it selected national road 59 lines on the demonstrative route and it analyzed a disaster risk. RESULTS: Demonstrative route not only the disaster risk to be it will be able to compare a disaster risk fixed quantity like the economical efficiency degree in compliance with LCC expense productions it compared and there being the designer will be able to decide the alternative route, it confirmed. CONCLUSIONS: Roads can be designed by considering occurs repeatedly landslides and debris flow caused by disasters in advance and expect to be able to effect that can reduce the overall cost to recover losses caused by the disaster, and temporally loss is expected.

Route Planning Considering Risk Factors Based on GIS (GIS 기반의 리스크 요인을 고려한 노선 계획)

  • Roh Tae-Ho;Jang Ho-Sik
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.1-19
    • /
    • 2006
  • Researches on method for quantitative analysis applied with decision-making in consideration of variation in risk factors based on GIS(Geographic Information System) concluded as follows. Firstly, by way of decision-making in consideration of variation in risk factors, quantitative analysis performed for the existing route was applied to the new route, which would bring about reliable criteria in route planning and basic design stage. Secondly, horizontal and vertical alignment were easily available out of GIS for relatively speedy design and analysis with three dimensional alignment by decision-making in route planning. Thirdly, automation of route alignment is possible by utilizing quantitative evaluation system established in this research so that a risk analysis can be carried out in a relatively short time. Therefore it will eventually contribute to further development of road design technology.

  • PDF

A Study on Transportation Route of Chemicals using Quantitative Risk Assessment (정량적 위험성평가를 이용한 화학물질 운송경로에 관한 연구)

  • Byun, Yoon Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.46-52
    • /
    • 2017
  • During the transportation of chemicals, quantitative risk assessment for chemical leakage accidents caused by traffic accidents was carried out and the appropriateness of chemical transportation route was evaluated. The quantitative risk assessment method applied to the chemical leakage accidents that may occur in the chemical handling equipments installed in the workplace was presented and applied to the chemical transportation. By analyzing the number of traffic accidents in transportation vehicles, the probability of chemical leakage accidents during chemical transportation was predicted and applied to the quantitative risk assessment of chlorine gas leakage accidents that may occur when transporting liquified chlorine bombe using vehicles. As a result, the most appropriate route of transporting the liquefied chlorine bombe was suggested on the basis of risk.

Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage

  • Aalianvari, A.
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.671-683
    • /
    • 2017
  • Groundwater control is a significant issue in most underground construction. An estimate of the inflow rate is required to size the pumping system, and treatment plant facilities for construction planning and cost assessment. An estimate of the excavation-induced drawdown of the initial groundwater level is required to evaluate potential environmental impacts. Analytical and empirical methods used in current engineering practice do not adequately account for the effect of the jointed-rock-mass anisotropy and heterogeneity. The impact of geostructural anisotropy of fractured rocks on tunnel inflows is addressed and the limitations of analytical solutions assuming isotropic hydraulic conductivity are discussed. In this paper the unexcavated Zagros tunnel route has been classified from groundwater flow point of view based on the combination of observed water inflow and numerical modeling results. Results show that, in this hard rock tunnel, flow usually concentrates in some areas, and much of the tunnel is dry. So the remaining unexcavated Zagros tunnel route has been categorized into three categories including high Risk, moderately risk and low risk. Results show that around 60 m of tunnel (3%) length can conduit the large amount of water into tunnel and categorized into high risk zone and about 45% of tunnel route has moderately risk. The reason is that, in this tunnel, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern.

Optimal Ship Route Planning in Coastal Sea Considering Safety and Efficiency (안전과 효율을 고려한 연안 내 선박의 최적 항로 계획)

  • Lee, Won-Hee;Choi, Gwang-Hyeok;Ham, Seung-Ho;Kim, Tae-wan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.38-39
    • /
    • 2019
  • Optimal route planning is the route planning to minimize voyage time or fuel consumption in a given ocean environment. Unlike the previous studies on weather routing, this study proposes an optimization method for the route planning to avoid the grounding risk in the coast. The route way-points were searched using Dijkstra algorithm, and then the optimization was performed to minimize fuel consumption by setting the optimization design parameter to the engine rpm. To set the engine rpm, a method to use the fixed rpm from the departure point to the destination point, and a method to use the rpm for each section by dividing the route were used. The ocean environmental factors considered for route planning were wind, wave, and current, and the depth information was utilized to compute grounding risk. The proposed method was applied to the ship passing between Mokpo and Jeju, and then it was confirmed that fuel consumption was reduced by comparing the optimum route and the past navigated route.

  • PDF

A Basic Study on Proper Straight Route Distance under Marine Bridge using ES Model (ES모델을 이용한 해상교량 하부 적정 직선항로 길이에 대한 기초 연구)

  • Park, Young-Soo;Choi, Kwang-young;Park, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.133-139
    • /
    • 2018
  • Keeping a proper straight route length under the marine bridge is one of the important factors for the safe passage of ships. However, according to port and harbor design standards, there is only a constant guideline of 8 times the length of the marine bridge underpass. On this study, we used the ES model to determine the ratio of risk to the route width, traffic volume, the degree of curvature of the route, and the length of the straight route in order to derive the optimal straight route distance. As a result, the risk ratio decreased by 2.27% as the route distance increased from 3L to 10L when the degree of curvature of the route was $45^{\circ}$. The risk associated with curvature was found to be 4.83% when the bending degree was changed from $0^{\circ}$ to $45^{\circ}$ in the case of 3L length. In addition, it was confirmed that the risk ratio according to the degree of curvature of the route and the straight route was reduced by 1.45% at maximum under the condition that the width of the line was 400m and the number of the vessels generated per hour was 20. It was verified that a straight route distance more than a certain length is needed depending on the congestion degree and the degree of curvature of the route when constructing the marine bridge.

A Study on the Plan of Inundation Response of Skyscrapers with Evacuation Route Calculation (대피경로 산정을 통한 초고층 건축물의 침수 대피 방안에 관한 연구)

  • Kim, Joon-Ha;Kim, Tae-Heon;Jung, Jae-Wook
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.123-132
    • /
    • 2020
  • Purpose: In this study, the authors propose a flood evacuation plan for skyscrapers with law related to underground space of skyscrapers, domestic and international underground space flood case study and simulation test. Method: This study compares the evacuation pattern of various case from flooded underground spaces extending over several floors with respect to the number of evacuation routes with. Also, simulation test was performed by setting up the virtual underground spaces consisting of three-stories basement and changing the number of the ground entrance, area of the basement and the flooding heights of the basement. Result: There was no difference in evacuation route according to the inundation risk even if there was an area corresponding to risk level 4. This is because the risk in the starting area is greater than that in the evacuation route. Especially, even if the risk of evacuation route increases with time, there is no change in route because the route must be passed to reach the evacuation site. Conclusion: In this study, there was no difference in evacuation route according to the inundation risk. However, if the size and shape of the underground space of each building is different, the depth of inundation with time may be different.

Development of a Collision Risk Assessment System for Optimum Safe Route (최적안전항로를 위한 충돌위험도 평가시스템의 개발)

  • Jeon, Ho-Kun;Jung, Yun-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.670-678
    • /
    • 2018
  • In coastal waters where the traffic volume of the ship is high, there is a high possibility of a collision accident because complicated encounter situations frequently occurs between ships. To reduce the collision accidents at sea, a quantitative collision risk assessment is required in addition to the navigator's compliance with COLREG. In this study, a new collision risk assessment system was developed to evaluate the collision risk on ship's planned sailing routes. The appropriate collision risk assessment method was proposed on the basis of reviewing existing collision risk assessment models. The system was developed using MATLAB and it consists of three parts: Map, Bumper and Assessment. The developed system was applied to the test sea area with simple computational conditions for testing and to actual sea areas with real computational conditions for validation. The results show the length of own ship, ship's sailing time and sailing routes affect collision risks. The developed system is expected to be helpful for navigators to choose the optimum safe route before sailing.