• Title/Summary/Keyword: Roundness Accuracy

Search Result 71, Processing Time 0.029 seconds

An Analysis of Performance Error of Roundness Measuring Instrument -by phase different method- (眞圓度 測定器의 誤差特性에 대한 解析 -위상차법-)

  • 한응교;허문석;박익근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.31-37
    • /
    • 1988
  • A phase different method to evaluate the instrument error of roundness measuring instrument and the form error of specimens for the calibration of the instrument is used. An instrument with a rotary table supported by an air bearing was calibrated by using the standard balls as a standard. The calibration was carried out repeatedly by setting the same ball in 12 phase angles(per 30.deg.) on the table and by recording their roundness errors with a magnification of 100,000 times. As a result of data analysis of all the observations, readout at each of 144 orientations(per 2.5.deg.) from recorded data file, the error of performance of the instrument and the specimens are separated. In the particular instrument used in the present experiment, the error of the instrument was determined with the accuracy of 0.0164 (.mu.m) and the form error of the specimens was determined with the accuracy of 0.0264,0.0172(.mu.m), respectively. If the instrument was calibrated by using the above specimens, then the accuracy of the measurement of roundness error can be improved to about 0.017 (.mu.m).

  • PDF

A study on evaluation of roundness characteristics about precise machined parts (정밀가공 부품의 진원도 특성 평가에 관한 연구)

  • Oh SangLok;Lee Gab-jo;Kim Jong-Kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.209-215
    • /
    • 2005
  • The dimensions and forms of precise machined parts are different to kinds of machine. It will be variant according to machine wear, tool form, cutting method and cutting condition at the same machine. At that time, the most important things are controlled and measured by appropriate measuring instruments. This paper aims to contribute to improving measurement accuracy through evaluation and consideration about various roundness in the machining company.

  • PDF

A Study on the Comparison of Least Squares Roundness with Minimum Zone Roundness (진엔도 평면법에 있어서 최소자승법과 최소영역법의 비교)

  • Kang, Myung-Soon;Han, Eung-Kyo;Kwon, Dong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.3
    • /
    • pp.59-69
    • /
    • 1985
  • The purpose of this paper is to investigate the variations of out-of- roundness due to its assessment methods for the practical workpieces. Experiments were carried out with the test specimens having the typical roundness profile. The roundness measuring system which has the autocentripetal functions and the automatic centering table unit was used. From the experimental results, it was found that the ratio of LSC to MZC values varied with the shape of roundness profiles, and the rate of variation for out-of-roundness was increased logarithmically with the increment of undulations by the effect of filter. Therefore, it is suggested that the least squares center method should be useful with the sufficient accuracy except for some special cases in the roundness profiles, and the condition of filter has considerable influence upon the out-of-roundness to be measured.

  • PDF

A Study on Roundness Measurement by Three Point Method with Stylus Type Pickups (촉침식변위검출기를 이용한 3점법진도도측정에 관한 연구)

  • Han, Eung-Kyo;Choi, Man-Soo;Rho, Byung-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.2
    • /
    • pp.47-55
    • /
    • 1987
  • Recently, in precision working, precision is in submicron. Therefore, when we measure various finished goods in superfine measurement, because it is relatively difficult to disregard effect of surroundings, these effect of surroundings must be compensated or canceled. In this study, for roundness measurement, three point method is researched which is able to cancel the effect of rotation accuracy of axis and eccenricity of workpiece. It is difference between this three point method and tradi- tional three point method whose measuring apparatus have three movable pickups posit- ioned with angle and between the pickups. As a results, when rotation accuracy of axis is varied from $0.02\mu\textrm{m}$ to $0.05\mu\textrm{m}$ the width of variation of measured roundness is $0.04\mu\textrm{m}$. And, when eccentricity of workpiece is varied from 0 to $4\mu\textrm{m}$, the width of variation of measured roundness is $0.005\mu\textrm{m}$. These error width are disregardable because they are in 10% of measured roundness. Therefore, by this three point method, the effect of rotation accuracy of axis and the effect of eccentricity of workpiece are canceled. And we are able to select the angle between the pickups ($\phi$ and $\tau$) by means of relation between $F_{k}$ and K.

  • PDF

Machining Precision according to the Change of Feedrate when Ball Endmilling of Semisphere Shape (볼 엔드밀에 의한 반구 가공시 이송속도 변화에 따른 가공정밀도)

  • 임채열;우정윤;김종업;왕덕현;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.930-933
    • /
    • 2000
  • Experimental study was conducted for finding the characteristics of machining precision according to the change of feedrate when ball endmilling of semisphere shape. The values of tool deflection and cutting force were measured simultaneously by the systems of eddy-current sensor and dynamometer. The machining precision was analyzed by roundness values, which were deeply relating with tool deflection and forces. the roundness was decreased in down-milling than in up-milling for each feedrate. As the cutting edge is moved to radius direction on the tool path, the tool deflection and the cutting force were seemed to be decreased. As the tool path was moved downward, the values of roundness, cutting force and tool deflection were obtained better ones. When compared the values of roundness, cutting force and tool deflection for different feedrate, the best machining accuracy was obtained at feed rate of 90mm/min in down-milling.

  • PDF

The Development of Automatic Measurement Algorithm of Concentricity and Roundness using Image Processing Technique (이미지 프로세싱을 이용한 가공 물체의 동심도와 진원도 자동 측정 알고리즘 개발)

  • 허경무;문형욱
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.227-235
    • /
    • 2003
  • We propose an algorithm for the automatic measurement of concentricity and roundness using image processing technique. The proposed measuring method consists of the preprocessing process and the measuring process. In the measuring process, two types of concentricity measurement algorithm and one type of roundness measurement algorithm are proposed. We could measure the concentricity and roundness using input image from CCD camera, without using special measurement equipment. From the experimental results, we could find that the required measurement accuracy specification is sufficiently satisfied using our proposed method.

A Study for the Roundness Estimation (진원도 형상 추정 연구)

  • Kim, Soo-Kwang;Jun, Jae-Uhk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.38-45
    • /
    • 2011
  • The criteria for determining the elements are the minimum zone method(MZM) and the least squares method(LSM). The LSM is deterministic and simple but is limited at the measurements whose errors are significant compared with form errors. For the precise condition, minimum zone method(MZM) has been selected to determine the elements. The roundness is the fundamental problem in the evaluating form errors. In this paper, anew approach adapting the genius education concept is proposed to obtain an accurate results for the MZM and the LSM of the roundness. Its computational algorithm is studied on a set of measured sample data. To be of almost no account of the specification(the number and the standard deviation etc.) of the sanple data, the results shoqs excellent reliability and high accuracy in estimating the roundness.

A scheme on roundness lmprovement in internal grinding of bearing inner race (베어링 내륜의 내면 연삭가공에서 진원도 개선 방안)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Bae, Jeong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.60-66
    • /
    • 1996
  • Precision of bearing race is very important to maintain the clearance between ball and inner race. In internal grinding of bearing race, its roundness is dependent on shoe wear, accuracy of jig, dressing method and grinding conditions. In this study, the characteristics of shoe wear and eccentricity of workpiece were investigated experimentally. When wear of fornt shoe wear reaches at 100.mu. m and that of rear shoe reaches at 114 .mu. m, eccentricity of inner race is increased to 1.4 .mu. m. Roundness of race is mainly related to wear of rear shoe and ring type shoe is recommended to improve roundness of race.

  • PDF

Development of automatic measurement method of concentricity and roundness using image processing technique

  • Moon, Hyung-Wook;Huh, Kyung-Moo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.130.2-130
    • /
    • 2001
  • In this paper, we suggest an algorithm for the automatic measurement of concentricity and roundness using image processing technique. From the experimental results, we could find that the required measurement accuracy specification is sufficiently satisfied using our proposed method.

  • PDF

Mathematical Modeling of the Roundness for Plastic Injection Mold Parts with Complicated 3D curvatures (복잡한 3차원 곡면을 가지는 플라스틱 사출 성형품을 위한 진원도의 수학적 모델링)

  • Yoon, Seon Jhin
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.6-11
    • /
    • 2019
  • In this study, we constructed the mathematical model to evaluate the roundness for plastic injection mold parts with complicated 3D curvatures. Mathematically we started off from the equation of circle and successfully derived an analytical solution so as to minimize the area of the residuals. On the other hand, we employed the numerical method the similar optimization process for the comparison. To verify the mathematical models, we manufactured and used a ball valve type plastic parts to apply the derived model. The plastic parts was fabricated under the process conditions of 220-ton injection mold machine with a raw material of polyester. we experimentally measured (x, y) position using 3D contact automated system and applied two mathematical methods to evaluated the accuracy of the mathematical models. We found that the analytical solution gives better accuracy of 0.4036 compared to 0.4872 of the numerical solution. The numerical method however may give adaptiveness and versatility for optional simulations such as a fixed center.