• Title/Summary/Keyword: Roughness factor

Search Result 455, Processing Time 0.033 seconds

Analysis of the Fracture Roughness of Crystalline Rock under Multi-stage Stress Conditions (다단계압력 환경하에서의 결정질 암석의 절리면 거칠기 변화 분석)

  • Choi, Junghae;Kim, Heyjin
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.237-249
    • /
    • 2019
  • The roughness changes on a fracture surface were analyzed via a multi-stage compression test under high temperatures to assess how the cracks in a rock mass affect groundwater movement. The analyzed samples consist of coarse granitic rocks from approximately 40 and 270 m depth, and fine granitic rocks from 500 m depth. The compression test was conducted on $20{\times}40{\times}5mm$ samples using a loading system where the pressure increases in 10 MPa increments to 120 MPa. A high-resolution 3D confocal laser scanning microscope (CLSM) was used to observe the surface changes, including the roughness changes, at each pressure step. The roughness change was calculated based on the roughness factor. The experimental results indicate that the roughness of the fracture surface varies with rock type under the stepwise pressure conditions. These data provide a basis for predicting groundwater flow along rock fractures.

Estimation on The Atmospheric Stability and Flow Characteristics of Planetary Boundary Layer in Wolryong Coastal Region (월령 연안지역 대기경계층의 유동특성과 대기 안정성에 대한 고찰)

  • Jeong, Tae-Yoon;Lim, Hee-Chang;Kim, Hyun-Goo;Jang, Moon-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.857-865
    • /
    • 2009
  • The physical properties of an atmospheric boundary layer in Wolryong, a west coastal region of Jeju, South Korea, in terms of the atmospheric stability and roughness length, is important and relevant to both engineers and scientists. The study is aiming to understand the atmospheric stability around this region and its effect on the roughness length. We calculate the Monin-Obukhov length(L) against 3 typical regions of the atmospheric condition - unstable regime (-5$-0.2{\leq}H/L{\leq}0.2$) and stable regime (0.2

Effects of Kurtosis on the Pressure Flow Factor (Kurtosis 변화에 따른 Pressure Flow Factor에 관한 연구)

  • 강민호;김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.243-250
    • /
    • 2000
  • In the partial lubrication regime, the roughness effects are most important due to the presence of interacting asperities. An average Reynolds equation using flow factors is very useful to determine effects of surface roughness on partial lubrication. In this paper, the pressure flow factors for Gaussian and non-Gaussian surfaces are evaluated in terms of kurtosis. The effect of kurtosis on pressure flow factor is investigated using random rough surface generated numerically. The pressure flow factor increases with increasing kurtosis in partial lubrication regime(h/$\sigma$<3). As h/$\sigma$increases, the pressure flow factor approach to 1 asymptotically regardless of kurtosis.

  • PDF

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.

Estimation of Roughness Coefficient Using a Representative Grain Diameter for Han Stream in Jeju Island (한천의 대표입경을 이용한 조도계수 산정)

  • Lee, Jun-Ho;Yang, Sung-Kee;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.563-570
    • /
    • 2013
  • Roughness coefficient was computed for review of applicability based on measurement of the representative grain diameter reflecting channel characteristics of Han Stream. After field survey, collection of bed material, and grain analysis on the collected bed material, roughness coefficient was computed using representative grain and existing empirical equation for roughness coefficient. Value of roughness coefficient calculated using equation by Meyer-Peter and Muller (1948) was 0.0417 for upstream, 0.0432 for midstream, and 0.0493 for downstream. As a result of comparing the computed roughness coefficient to other empirical equations for review of applicability, the coefficient was larger in Strickler (1923) equation by 0.006. Smaller coefficient was shown by Planning Report for River Improvement Works. Equation by Garde and Raju (1978) was larger by 0.004, and equations by Lane and Carlson (1953) and by Meyer-Peter and Muller (1948) were larger by 0.001. Such precise roughness coefficient is extremely important when computing the amount of flood in rivers to prevent destruction of downstream embankments and property damages from flooding. Since roughness coefficient is a factor determined by complicated elements and differs according to time and space, continued management of roughness coefficient in rivers and streams is deemed necessary.

Average Flow Model with Elastic Deformation for CMP (화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.284-291
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

The Effects of Surface Energy and Roughness on Adhesion Force (표면에너지와 거칠기가 응착력에 미치는 영향)

  • Rha, Jong-Joo;Kwon, Sik-Cheol;Jeong, Yong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1335-1347
    • /
    • 2006
  • Surface energies calculated from measured contact angles between several solutions and test samples, such as Si wafer, $Al_2O_3$, $SiO_2$, PTFE(Polytertrafluoroethylene), and DLC(Diamond Like Carbon) films, based on geometric mean method and Lewis acid base method. In order to relate roughness to adhesion force, surface roughness of test samples were scanned large area and small by AFM(Atomic Force Microscopy). Roughness was representative of test samples in large scan area and comparable with AFM tip radius in small scan area. Adhesion forces between AFM tip and test samples were matched well with order of roughness rather then surface energy. When AFM tips having different radius were used to measure adhesion force on DLCI film, sharper AFM tip was, smaller adhesion force was measured. Therefore contact area was more important factor to determine adhesion force.

Estimation of the Ground Surface Roughness Applied by Acoustic Emission Signal (AE 신호를 이용한 연삭 가공물의 표면 거칠기 예측)

  • 곽재섭;송지복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • An in-process estimation of the ground surface roughness is a bottle-neck and an essential field in conventional grinding operation. We defined the dimensionless average roughness factor (D.A.R.F) that exhibits a roughness characteristics of ground surface. The D.A.R.F was composed easily of the absolute average and the standard deviation values which were the analytic parameters of the acoustic emission (AE) signal generated during the machining process. The theoretical equation between the surface roughness and the D.A.R.F has been derived from the linear regressive analysis and verified its availability through the experimentation on the surface grinding machine.

  • PDF

Extraction of the Surface Roughness in Grinding Operation by Acoustic Emission Signal (AE 신호에 의한 연삭가공 표면거칠기 검출)

  • Chung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.147-153
    • /
    • 1999
  • An in-process extraction method of the ground surface roughness is a bottle-neck and essential field in conventional machining process. We define the D.A.R.F(Dimensionless Average Roughness Factor) that has a roughness characteristic of ground surface. D.A.R.F include the absolute average and the standard deviation values which are the analytic parameters of the AE(Acoustic Emission) signal generated during the grinding operation. The theoretical equation between the surface roughness and the D.A.R.F has been derived from the linear regressive analysis and verified its availability through the experimentation on the surface grinding machine.

  • PDF

Die Sinking Electrical Discharge Machining of SiC/AI Metal Matix Composite (탄화규소/알루미늄 금속계 복합재료의 형상방전가공)

  • 왕덕현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.34-40
    • /
    • 1998
  • Conductive metal matrix composite(MMC) material of 30% silicon carbide particulated based on aluminum matrix was machined by die sinking electrical discharge machining(EDM) process according to different current and duty factor for reverse polarity of electrode. Material removal rate(MRR) was examined by process under various operation conditions. The surface morphology was evaluated by surface roughness parameter and scanning electron microscopy(SEM) research. The MRR was suddenly increased over 11 ampere of current, and it was slightly changed over 0.3 of duty factor. The maximum surface roughness of EDMed surface was affected by the duty factor. The SEM photograghs of EDMed surface showed wide recast distribution region of melting materials as increased of current and duty factor.

  • PDF