• 제목/요약/키워드: Roughness Position

검색결과 97건 처리시간 0.021초

지형 험준도를 고려한 프로파일 기반 지형참조항법과 관성항법의 결합 알고리즘 (Profile-based TRN/INS Integration Algorithm Considering Terrain Roughness)

  • 유영민;이선민;권재현;유명종;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.131-139
    • /
    • 2013
  • In recent years alternative navigation system such as a DBRN (Data-Base Referenced Navigation) system using geophysical information is getting attention in the military navigation systems in advanced countries. Specifically TRN (Terrain Referenced Navigation) algorithm research is important because TRN system is a practical DBRN application in South Korea at present time. This paper presents an integrated navigation algorithm that combines a linear profile-based TRN and INS (Inertial Navigation System). We propose a correlation analysis method between TRN performance and terrain roughness index. Then we propose a conditional position update scheme that utilizes the position output of the conventional linear profile type TRN depending on the terrain roughness index. Performance of the proposed algorithm is verified through Monte Carlo computer simulations using the actual terrain database. The results show that the TRN/INS integrated algorithm, even when the initial INS error is present, overcomes the shortcomings of linear profile-based TRN and improves navigation performance.

영역기반 지형 험준도 지수를 이용한 달착륙선의 일괄처리방식 지형상대항법 성능분석 (Performance Analysis of Batch Process Terrain Relative Navigation Using Area based Terrain Roughness Index for Lunar Lander)

  • 구평모;박영범;박찬국
    • 한국항공우주학회지
    • /
    • 제44권7호
    • /
    • pp.629-639
    • /
    • 2016
  • 지형상대항법은 측정된 지형고도와 DEM(Digital Elevation Map)의 지형고도의 비교를 통해 위치보정이 이루어지는 시스템이다. 하지만 지형상대항법은 언덕과 같은 반복되는 지형과 같이 측정된 지형고도 프로파일과 후보 지형고도 프로파일이 유사할 때 다른 지형으로 오보정을 유발 할 수 있는 단점을 가지고 있어 항법 성능이 떨어지는 것으로 알려져 있다. 본 논문에서는 이러한 단점을 극복하기 위해 관심영역 안에 주변 지형의 유사한 정도를 판단하는 영역기반 지형 기울기 험준도 지수를 적용하였고[11], 영역기반 지형 곡률 험준도 지수를 제안하였다. 제안한 지형 험준도 지수의 성능 검증을 위하여 기존의 궤적기반 지형 험준도 지수와 영역기반 지형 험준도 지수를 달착륙선의 지형상대항법에 적용한 시뮬레이션을 수행하였다. 그 결과, 기존의 궤적기반 지형 험준도 지수를 고려하였을 때 보다 영역기반 지형 험준도 지수를 고려하였을 때 지형상대항법 성능이 개선됨을 확인하였다.

거칠기 위치에 따른 이중관 내의 난류유동 (Turbulent flow in annuli depending on the position of roughness)

  • 안수환;김경천
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.891-899
    • /
    • 1997
  • This paper presents the results of a detailed experimental examination of fully developed asymmetric flows between annular tubes with square-ribbed surface roughness. The main emphasis of the research has been on establishing the turbulence structure, particularly in the central region of the channel where the two dissimilar wall flows interact. Measurements have included profiles of time mean velocities, turbulence intensities, turbulent shear stresses, triple velocity correlations, skewness, and flatness. The region of greatest interaction is characterized by strong diffusional transport of turbulent shear stress and kinetic energy from rough toward the smooth wall region, giving rise to an appreciable separation between the planes of zero shear stresses depending on positions of roughness on the walls.

가변 조도계수 부정류 계산모형 (Unsteady Flow Model with Variable Roughness Coefficient)

  • 김한준;전경수
    • 한국수자원학회논문집
    • /
    • 제37권12호
    • /
    • pp.1055-1063
    • /
    • 2004
  • 공간적 위치 및 유량 값에 따라 각 계산점마다 조도계수의 값이 달리 주어질 수 있도록 하는 가변 조도변수 부정류 계산모형을 수립하였다. 유량과 조도계수의 관계식으로는 계단함수 또는 멱함수를 적용할 수 있도록 하였다. 수립된 모형을 충주댐부터 팔당댐까지의 남한강 구간에 적용하여 최적화에 의한 매개변수의 추정을 수행하였다. 가변 매개변수 모형의 보정 결과, 계단함수 도형 및 멱함수 모형 모두 유량이 커질수록 조도계수가 감소하는 경향이 일관되게 나타났다. 이러한 경향은 여주 지점 상류구간의 경우에 더욱 현저한 것으로 나타났다. 가변 조도계수 모형의 매개변수 추정에 따른 오차가 고정 조도계수 모형의 경우보다 작아짐을 알 수 있었다.

금형의 절삭가공에서 이론 모형 기반 표면거칠기 예측 결과의 실험적 모형 전환을 위한 인공신경망 구축에 대한 연구 (A Study on the Construction of an Artificial Neural Network for the Experimental Model Transition of Surface Roughness Prediction Results based on Theoretical Models in Mold Machining)

  • 김지우;이동원;김종선;김종수
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.1-7
    • /
    • 2023
  • In the fabrication of curved multi-display glass for automotive use, the surface roughness of the mold is a critical quality factor. However, the difficulty in detecting micro-cutting signals in a micro-machining environment and the absence of a standardized model for predicting micro-cutting forces make it challenging to intuitively infer the correlation between cutting variables and actual surface roughness under machining conditions. Consequently, current practices heavily rely on machining condition optimization through the utilization of cutting models and experimental research for force prediction. To overcome these limitations, this study employs a surface roughness prediction formula instead of a cutting force prediction model and converts the surface roughness prediction formula into experimental data. Additionally, to account for changes in surface roughness during machining runtime, the theory of position variables has been introduced. By leveraging artificial neural network technology, the accuracy of the surface roughness prediction formula model has improved by 98%. Through the application of artificial neural network technology, the surface roughness prediction formula model, with enhanced accuracy, is anticipated to reliably perform the derivation of optimal machining conditions and the prediction of surface roughness in various machining environments at the analytical stage.

화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델 (Average Flow Model with Elastic Deformation for CMP)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • 제20권5호
    • /
    • pp.284-291
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

액체 재료 직접주사방식 SFF에서 노즐 위치에 따른 적층 특성 (Characteristics of Surface Lamination according to Nozzle Position in Liquid Direct Writing SFF)

  • 정현준;이인환;김호찬;조해용
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.41-48
    • /
    • 2014
  • Direct writing(DW) is a method of patterning materials to a substrate directly, without a mask. It can use a variety of materials and be applied to various fields. Among DW systems, the flow-based type, using a syringe pump and nozzle, is simpler than other types. Furthermore, the range of materials is exceptionally wide. In additive processes, a three dimensional structure is made of stacking layer. Each layer is made of several lines. In this regard, good surface roughness of fabricated layers is essential to three dimensional fabrication. The surface roughness of any fabricated layer tends to change with the dispensing pattern. When multiple layers fabricated by a nozzle dispensing system are stacked, control of the nozzle position from the substrate is important in order to avoid interference between the nozzle and the fabricated layer. In this study, a fluid direct writing system for three dimensional structure fabrication was developed. Experimentsto control the position of the nozzle from substrate were conducted in order to examine the characteristics of the material used in this system.

Influence of Surface Roughness of Tools on the Friction Stir Welding Process

  • Hartmann, Michael;Bohm, Stefan;Schuddekopf, Sven
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.22-28
    • /
    • 2014
  • Most publications on friction stir welding describe phenomena or results with given process parameters like feed rate, rotation speed, angle and depth of penetration. But without a complete documentation of tool design, the results under the same process parameters are completely different. For this purpose, the Institute of Cutting and Joining Manufacturing Processes (tff), University of Kassel investigated the influence of tool roughness on the friction stir welding process. Therefore a defined surface finish was produced by turning and die sinking. As basis of comparison the constant parameters were rotation speed, feed rate, tilt angle and a heel plunge depth. Sound butt-welds were produced in aluminium alloy 6082 (AlMgSi1) with 1.5 mm sheet thickness with a turned reference tool with a surface of $Ra=0.575{\mu}m$ in position controlled mode. The surfaces are manufactured from a very fine to a very rough structure, classified by the VDI-classes with differences in the arithmetical mean roughness. It can be demonstrated with the help of temperature measures, that less heat is generated at the surfaces of the shoulder and the pin by the higher roughness due to lower active friction contact surface. This can also be seen in the resulting wormhole defects.

Observed tropical cyclone wind flow characteristics

  • Schroeder, John L.;Edwards, Becca P.;Giammanco, Ian M.
    • Wind and Structures
    • /
    • 제12권4호
    • /
    • pp.349-381
    • /
    • 2009
  • Since 1998, several institutions have deployed mobile instrumented towers to collect research-grade meteorological data from landfalling tropical cyclones. This study examines the wind flow characteristics from seven landfalling tropical cyclones using data collected from eight individual mobile tower deployments which occurred from 1998-2005. Gust factor, turbulence intensity, and integral scale statistics are inspected relative to changing surface roughness, mean wind speed and storm-relative position. Radar data, acquired from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) network, are examined to explore potential relationships with respect to radar reflectivity and precipitation structure (convective versus stratiform). The results indicate tropical cyclone wind flow characteristics are strongly influenced by the surrounding surface roughness (i.e., exposure) at each observation site, but some secondary storm dependencies are also documented.

FDM에서 Build Orientation이 쾌속조형물의 표면에 미치는 영향 (Study on Surface Roughness by Build Orientation at FDM)

  • 전재억;선진호;권광진;권혁준;정진서;하만경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.591-596
    • /
    • 2002
  • Fused deposition(FD) modeling by Stratasys Inc., is one of the material deposition subfamilies of solid freefrom fabrication(SFF) technologies. In this process, build material in the form of a flexible filament, is heated to a semi-liquid state and extruded from a controlled deposition head onto a fixtureless table in a temperature controlled environment. The position of nozzle is computer controlled relative to the base, which allows geometric complex models to be made to precise dimensions. FDM provide what the part was directly tested by the worker. It provide believable data. This Study is identify to surface roughness by build orientation adjustment. So, the paper is the study on surface roughness by build orientation at FDM.

  • PDF