• 제목/요약/키워드: Roughness Parameters

검색결과 754건 처리시간 0.026초

Geostatistical algorithm for evaluation of primary and secondary roughness

  • Nasab, Hojat;Karimi-Nasab, Saeed;Jalalifar, Hossein
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.359-370
    • /
    • 2021
  • Joint roughness is combination of primary and secondary roughness. Ordinarily primary roughness is a geostatistical part of a joint surface that has a periodic nature but secondary roughness or unevenness is a statistical part of that which have a random nature. Using roughness generating algorithms is a useful method for evaluation of joint roughness. In this paper after determining geostatistical parameters of the joint profile, were presented two roughness generating algorithms using Mount-Carlo method for evaluation of primary (GJRGAP) and secondary (GJRGAS) roughness. These based on geostatistical parameters (range and sill) and statistical parameters (standard deviation of asperities height, SDH, and standard deviation of asperities angle, SDA) for generation two-dimensional joint roughness profiles. In this study different geostatistical regions were defined depending on the range and SDH. As SDH increases, the height of the generated asperities increases and asperities become sharper and at a specific range (a specific curve) relation between SDH and SDA is linear. As the range in GJRGAP becomes larger (the base of the asperities) the shape of asperities becomes flatter. The results illustrate that joint profiles have larger SDA with increase of SDH and decrease of range. Consequencely increase of SDA leads to joint roughness parameters such Z2, Z3 and RP increases. The results showed that secondary roughness or unevenness has a great influence on roughness values. In general, it can be concluded that the shape and size of asperities are appropriate parameters to approach the field scale from the laboratory scale.

레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발 (Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter)

  • 배기윤;이정인
    • 터널과지하공간
    • /
    • 제12권4호
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.

선반작업에서 직교계획법을 이용한 표면 거칠기 예측모델에 관한 연구 (A Study on the Prediction Model of Surface Roughness by the Orthogonal Design for Turning Process)

  • 홍민성;염철만
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.89-94
    • /
    • 2001
  • This paper presents a study of surface roughness prediction model by orthogonal design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed depth of cut, and nose radius on surface roughness. An effect of interaction between two parameters on surface roughness has also been investigated. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in turning process is a method to estimate the effects of cutting parameters on sur-face roughness.

  • PDF

다구찌 실험 계획법을 활용한 평삭 가공에서의 표면 거칠기에 대한 절삭조건 영향 분석 (Effects of Cutting Parameters on Surface Roughness in Planing Using Taguchi Method)

  • 서동현;권예필;김영재;최환진;전은채
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.93-98
    • /
    • 2021
  • The complex effects of the machining parameters make it is difficult to control and predict surface roughness. The theoretical surface roughness observed during mechanical machining with a round tool is determined by the tool radius and pitch. However, it was revealed that other parameters, such as the depth of cut and cutting speed, also affect surface roughness. This study adapted the Taguchi method, which can analyze the effects of cutting parameters quantitatively with an efficient number of experiments, to optimize the parameters for better surface roughness. Experiments were designed based on an orthogonal array, and the quantitative effects on the surface roughness were analyzed using the S/N ratio. The surface roughness was affected by all parameters, especially the tool radius. The optimum cutting parameter values obtained in this study showed better surface roughness than the other combinations of the parameters.

측정방향에 따른 표면 거칠음 정도의 변화 양상 (Directional Variations in Surface Roughness Determinations)

  • Lee, Seok-Won
    • 한국지반공학회논문집
    • /
    • 제15권4호
    • /
    • pp.247-260
    • /
    • 1999
  • 여러 연구들을 통하여 표면 거칠음 정도가 접촉면 전단력에 매우 중요함이 밝혀졌으며, 따라서 그 역할을 충분히 이해하기 위해서는 표면 거칠음 정도가 정확히 정량화 되어져야 한다. 현재까지 이러한 표면 거칠음 정도를 나타내는 표면 거칠기 매개변수는 대부분 방향성을 고려하지 않은 3차원적인 trisector에서 측정되어 왔고, 그 결과는 정적인 표면을 대표하는 값으로 적당하였다. 그러나, 표면 거칠기 매개변수와 접촉면 전단력과 같이 방향성을 갖는 매개변수와의 상관관계를 조사하기 위해서는 전단방향과 동일한 방향으로 측정된 2차원적인 표면 거칠음 값이 더욱더 합리적인 대표 값이 될 수 있다. 따라서, 본 연구에서는 전단방향을 고려한 표면 거칠음 정도를 구할 수 있는 새로운 표면 거칠기 매개변수를 제안하였다. 제안된 방향성 매개변수와 기존의 표면 거칠기 매개변수를 비교 분석함으로서, 방향성 매개변수와 비 방향성 매개변수와의 상관관계를 조사하였다. 표면 거칠음 정도는 디지털 이미지 분석 시스템을 이용한 Optical Profile Microscopy(OPM) 방법을 이용하여 측정하였다. 그 결과, 본 연구에서 측정된 여러 가지 표면 거칠기 매개변수는 측정값에 있어서 비슷한 경향을 보여주었으며, 따라서, 서로간의 상관관계가 좋음이 밝혀졌다. 또한 표면 거칠음 정도가 증가함에 따라, 비 방향성의 3차원 매개변수 값이 방향성의 2차원 매개변수보다 계속적으로 증가하는 양상이 보여졌다.

  • PDF

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

완전요인계획에 의한 선삭가공시 표면거칠기 예측 (Surface roughness prediction with a full factorial design in turning)

  • 양승한;이영문;배병중
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.133-140
    • /
    • 2002
  • The object of this paper is to predict the surface roughness using the experiment equation of surface roughness, which is developed with a full factorial design in turning. $3^3$ full factorial design has been used to study main and interaction effects of main cutting parameters such as cutting speed, feed rate, and depth of cut, on surface roughness. For prediction of surface roughness, the arithmetic average (Ra) is used, and stepwise regression has been used to check the significance of all effects of cutting parameters. Using the result of these, the experimental equation of surface roughness, which consists of significant effects of cutting parameters, has been developed. The coefficient of determination of this equation is 0.9908. And the prediction ability of this equation was verified by additional experiments. The result of that, the coefficient of determination is 0.9718.

  • PDF

가공의 진전에 따른 표면의 프랙탈 차원 해석 (Fractal dimension analysis of machined surface according to machining progress)

  • 최임수;이기용;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.251-254
    • /
    • 1995
  • The quality and functionality of machined products is determined by surface finish. The surface roughness is characterized by roughness parameters such as R $_{a}$ and R $_{max}$. While such parameters are useful to define the quality of surface, they are nor sufficiently descriptive characteristics of surface. The fractal dimension which can describe characteristics od surface roughness than conventional roughness parameters has been applied. In this work, Relation between fractal dimension and surface roughness will be examined as a means of characterizing surface roughness.s.s.

  • PDF

랜덤중점변위법에 의한 거칠기의 생성 및 활용에 관한 연구 (Generation of Roughness Using the Random Midpoint Displacement Method and Its Application to Quantification of Joint Roughness)

  • 서현교;엄정기
    • 터널과지하공간
    • /
    • 제22권3호
    • /
    • pp.196-204
    • /
    • 2012
  • 거칠기에 대한 정량화는 암석 절리의 강도 및 변형, 수리특성 등을 연구함에 있어서 매우 중요하다. 이 연구는 절리 거칠기를 모사하고 거칠기의 속성을 고찰하였다. 프랙털 파라미터와 프로파일 특성치를 입력변수로 설정하여 랜덤중점변위법에 기반한 이차원적 정상성 브라운 프로파일이 생성되었다. 또한, 랜덤중점변위법을 사용하여 삼차원적 거칠기 면을 모사하는 절차가 제시되었다. 이 연구의 거칠기 모사기법은 절리 거칠기와 관련된 해석적 연구를 수행하기 위한 요소 기술로 활용될 수 있다. 자기유사 거칠기 프로파일에 대하여 통계적 거칠기 파라미터를 적용한 결과 미소 거칠기의 기울기와 관련된 $Z_2$, $SL_{ave}$, $SD_{SL}$ 등의 통계적 파라미터는 상관구조, 진폭 등의 거칠기 속성을 고려할 수 있으나 측점간격의 변화에 영향을 받는 것으로 나타났다.

돌기형 지오멤브레인에 의한 전단 메카니즘에 관한 실험 연구 (Experimental Study on Shear Mechanism Caused by Textured Geomembrane)

  • 이석원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.57-68
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear mechanism of geomembrane/geotextile interfaces. The alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. Then, the relationship between interface shear strength and surface roughness quantified at the interface is investigated. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF