• Title/Summary/Keyword: Roughness Map

Search Result 75, Processing Time 0.018 seconds

Deburring Technology of Vacuum Plate for MLCC Lamination Using Magnetic Abrasive Polishing and ELID Process (MLCC 적층용 진공척의 자기연마와 ELID연삭을 이용한 미세버 제거 기술)

  • Lee, Yong-Chul;Shin, Gun-Hwi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2015
  • This study has focused on the deburring technology of a vacuum plate for MLCC lamination using electrolytic in-process dressing (ELID) grinding, and the magnetic-assisted polishing (MAP) process. The surface of the vacuum plate has many micro-holes for vacuum suction. They are easily blocked by the burrs created in the surface-flattening process, such as the conventional grinding process. In this study, the MAP process, the ELID grinding process, and an ultrasonic vibration table are examined to remove the micro-burrs that lead to the blockage of the holes. In the results of the experiments, the MAP process and ELID grinding technology showed significant improvements of surface roughness and deburring performance.

Development of a Traversability Map for Safe Navigation of Autonomous Mobile Robots (자율이동로봇의 안전주행을 위한 주행성 맵 작성)

  • Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • This paper presents a method for developing a TM (Traversability Map) from a DTM (Digital Terrain Model) collected by remote sensors of autonomous mobile robots. Such a map can be used to plan traversable paths and estimate navigation speed quantitatively in real time for robots capable of performing autonomous tasks over rough terrain environments. The proposed method consists of three parts: a DTM partition module which divides the DTM into equally spaced patches, a terrain information module which extracts the slope and roughness of the partitioned patches using the curve fitting and the fractal-based triangular prism method, and a traversability analysis module which assesses traversability incorporating with extracted terrain information and fuzzy inference to construct a TM. The potential of the proposed method is validated via simulation works over a set of fractal DTMs.

Estimating Method of Surface Roughness Using Geographic Information (지리정보를 이용한 지표면조도 산정 방법)

  • CHOI, Se-Hyu;SEO, Eun-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.1-10
    • /
    • 2015
  • Rapid urban expansion and densification of the various industrial facilities affect the changes of topography and building in urban areas. Even if buildings proceed with high rise, they get mixed with low-rise buildings such as houses and industrial parks that have existed in the area. This may confuse the designer in estimating a surface roughness, an important factor in calculating the design wind velocity of building. This study analyzed the surface roughness by using a geographic information. Referring to the criteria of each country's building code, this study proposed a method to distinguish the surface roughness depending on the height of the surrounding buildings where the design building is located and calculated the surface roughness using 1:5000 topographic map and GIS. It is expected to solve problems that an existing designer calculates the surface roughness in a subjective manner and to help to design more rational buildings resistant to wind.

The Generation of Directional Velocity Grid Map for Traversability Analysis of Unmanned Ground Vehicle (무인차량의 주행성분석을 위한 방향별 속도지도 생성)

  • Lee, Young-Il;Lee, Ho-Joo;Jee, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • One of the basic technology for implementing the autonomy of UGV(Unmanned Ground Vehicle) is a path planning algorithm using obstacle and raw terrain information which are gathered from perception sensors such as stereo camera and laser scanner. In this paper, we propose a generation method of DVGM(Directional Velocity Grid Map) which have traverse speed of UGV for the five heading directions except the rear one. The fuzzy system is designed to generate a resonable traveling speed for DVGM from current patch to the next one by using terrain slope, roughness and obstacle information extracted from raw world model data. A simulation is conducted with world model data sampled from real terrain so as to verify the performance of proposed fuzzy inference system.

Towards a revised base wind speed map for the United Kingdom

  • Miller, Craig A.;Cook, Nicholas J.;Barnard, Richard H.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.197-212
    • /
    • 2001
  • Observations of extreme wind speeds in the United Kingdom from 1970 to 1980, corrected for the influence of upwind ground roughness and topography, have been analysed using the recently-developed "Improved Method of Independent Storms" (IMIS). The results have been used to compile two new maps of base wind speed and to confirm the climatic factors in current use. One map is 'irrespective' of wind direction and the other is 'equally weighted' by direction. The 'equally weighted' map is expected to be more consistently reliable and appropriate for use with the climatic factors for the design of buildings and structures.

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

Modified $A^*$ - Local Path Planning Method using Directional Velocity Grid Map for Unmanned Ground Vehicle (Modified $A^*$ - 방향별 속도지도를 활용한 무인차량의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.327-334
    • /
    • 2011
  • It is necessary that UGV(Unmanned Ground Vehicle) should generate a real-time travesability index map by analyzing raw terrain information to travel autonomously tough terrain which has various slope and roughness values. In this paper, we propose a local path planning method, $MA^*$(Modified $A^*$) algorithm, using DVGM (Directional Velocity Grid Map) for unmanned ground vehicle. We also present a path optimization algorithm and a path smoothing algorithm which regenerate a pre-planned local path by $MA^*$ algorithm into the reasonable local path considering the mobility of UGV. Field test is conducted with UGV in order to verify the performance of local path planning method using DVGM. The local path planned by $MA^*$ is compared with the result of $A^*$ to verify the safety and optimality of proposed algorithm.

Development of Surface Roughness Index using Gyroscope (자이로스코프를 이용한 노면 평탄도 분류지수 개발)

  • Hong, Sun-Gi;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.127-132
    • /
    • 2020
  • In this study, the process of providing information necessary to remove physical barriers such as road slopes that obstruct the activities of the disabled is in progress. Through experiments, we implement a quantified road surface roughness index that enables the implementation of IoT-based systems necessary for the elderly and the disabled to safely move to their destination. As a preliminary study, a road surface measurement device using a gyroscope was devised. To check the roughness and flatness of the road surface, X, Y displacement, and acceleration displacement were measured using a gyroscope. By calculating the measured data, the roughness and flatness of the road surface were quantified from 0 to 100. We implemented an algorithm that divides this index into 4 stages, displays it on a map, and provides it to users. Finally, a system for the disabled and elderly electric wheelchair users to secure basic mobility was established.

Application of Magnetic Assisted Polishing for ELID Ground Surface of Aluminum Oxide Ceramics (알루미나 세라믹스 ELID연삭면의 자기연마 가공 특성)

  • Lee, Yong-Chul;Jung, Myung-Won;Kim, Tae-Kyu;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1259-1264
    • /
    • 2013
  • This study has focused on the application of magnetic assisted polishing for ELID ground surface of aluminum oxide ceramics. Aluminum oxide ceramics has been widely used as advanced materials for electric, optic, mechanic, chemical usage and so on. In this study, ELID grinding and magnetic assisted polishing technology was adopted for high-effective manufacturing and high quality surface of ceramic parts. The characteristic of MAP machining have been evaluated by the value of surface roughness and surface profile before and after magnetic assisted polishing. As the results of experiments, the surface roughness after magnetic assisted polishing has shown a significant improvement and the surface roughness was more improved when the feed rate of tool became slow.

Magnetic Abrasive Polishing Technology with Ceramic Particles (세라믹 입자를 이용한 자기연마가공 기술 사례)

  • Kwak, Tae-Soo;Kwak, Jae-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1253-1258
    • /
    • 2013
  • Ceramic particles as polishing abrasives are often used in a magnetic abrasive polishing process because they have strong wear resistance. Non-ferromagnetic ceramic abrasives should be mixed with ferromagnetic iron particles for controlling the mixture within a magnetic brush during the polishing process. This study describes the application of the ceramic particles for the magnetic abrasive polishing. The distribution of the magnetic abrasives attached on a tool varies with magnetic flux density and tool rotational speed. From the correlation between abrasive adhesion ratio in the tool and surface roughness produced on a workpiece, practical polishing conditions can be determined. A step-over for polishing a large sized workpiece is able to be selected by a S curve, and an ultrasonic vibration assisted MAP produces a better surface roughness and increases a polishing efficiency.