• Title/Summary/Keyword: Rough isometry

Search Result 5, Processing Time 0.022 seconds

ROUGH ISOMETRY AND HARNACK INEQUALITY

  • Park, Hyeong-In;Lee, Yong-Hah
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.455-468
    • /
    • 1996
  • Certain analytic behavior of geometric objects defined on a Riemannian manifold depends on some very crude properties of the manifold. Some of those crude invariants are the volume growth rate, isoperimetric constants, and the likes. However, these crude invariants sometimes exercise surprising control over the analytic behavior.

  • PDF

ROUGH ISOMETRY, HARMONIC FUNCTIONS AND HARMONIC MAPS ON A COMPLETE RIEMANNIAN MANIFOLD

  • Kim, Seok-Woo;Lee, Yong-Han
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.73-95
    • /
    • 1999
  • We prove that if a given complete Riemannian manifold is roughly isometric to a complete Riemannian manifold satisfying the volume doubling condition, the Poincar inequality and the finite covering condition at infinity on each end, then every positive harmonic function on the manifold is asymptotically constant at infinity on each end. This result is a direct generalization of those of Yau and of Li and Tam.

  • PDF

ROUGH ISOMETRY AND THE SPACE OF BOUNDED ENERGY FINITE SOLUTIONS OF THE SCHRODINGER OPERATOR ON GRAPHS

  • Kim, Seok-Woo;Lee, Yong-Hah;Yoon, Joung-Hahn
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.609-614
    • /
    • 2010
  • We prove that if graphs of bounded degree are roughly isometric to each other, then the spaces of bounded energy finite solutions of the Schr$\ddot{o}$dinger operator on the graphs are isomorphic to each other. This is a direct generalization of the results of Soardi [5] and of Lee [3].

Asymptotic dirichlet problem for schrodinger operator and rough isometry

  • Yoon, Jaihan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.103-114
    • /
    • 1997
  • The asymptotic Dirichlet problem for harmonic functions on a noncompact complete Riemannian manifold has a long history. It is to find the harmonic function satisfying the given Dirichlet boundary condition at infinity. By now, it is well understood [A, AS, Ch, S], when M is a Cartan-Hadamard manifold with sectional curvature $-b^2 \leq K_M \leq -a^2 < 0$. (By a Cartan-Hadamard manifold, we mean a complete simply connected manifold of non-positive sectional curvature.)

  • PDF

ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2007
  • We prove that if a graph G of bounded degree has finitely many p-hyperbolic ends($1) in which every bounded energy finite p-harmonic function is asymptotically constant for almost every path, then the set $\mathcal{HBD}_p(G)$ of all bounded energy finite p-harmonic functions on G is in one to one corresponding to $\mathbf{R}^l$, where $l$ is the number of p-hyperbolic ends of G. Furthermore, we prove that if a graph G' is roughly isometric to G, then $\mathcal{HBD}_p(G')$ is also in an one to one correspondence with $\mathbf{R}^l$.