• Title/Summary/Keyword: Rough Estimate

Search Result 74, Processing Time 0.028 seconds

Estimation of the Maximum Friction Coefficient of the Rough Terrain to Control the Mobile Robots (주행로봇 제어를 위한 험지의 최대마찰계수 추정)

  • Kang, Hyun-Suk;Kwak, Yoon-Keun;Choi, Hyun-Do;Jeong, Hae-Kwan;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1062-1072
    • /
    • 2008
  • When mobile robots perform the mission in the rough terrain, the traversability depended on the terrain characteristic is useful information. In the traversabilities, wheel-terrain maximum friction coefficient can indicate the index to control wheel-terrain traction force or whether mobile robots to go or not. This paper proposes estimating wheel-terrain maximum friction coefficient. The existing method to estimate the maximum friction coefficient is limited in flat terrain or relatively easy driving knowing wheel absolute velocity. But this algorithm is applicable in rough terrain where a lot of slip occurred not knowing wheel absolute velocity. This algorithm applies the tire-friction model to each wheel to express the behavior of wheel friction and classifies slip-friction characteristic into 3 major cases. In each case, the specific algorithm to estimate the maximum friction coefficient is applied. To test the proposed algorithm's feasibility, test bed(ROBHAZ-6WHEEL) simulations are performed. And then the experiment to estimate the maximum friction coefficient of the test bed is performed. To compare the estimated value with the real, we measure the real maximum friction coefficient. As a result of the experiment, the proposed algorithm has high accuracy in estimating the maximum friction coefficient.

Comparison of the Numerical, Theoretical, and Empirical Scattering Models for Randomly Rough Surfaces

  • Hong Jin-Young;Oh Yisok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.725-728
    • /
    • 2005
  • The scattering problem of the randomly rough surface is examined by the method of moments(MoM), small perturbation method (SPM), integral equation method (IEM) and the semi-empirical polarimetic model. To apply the numerical technique of the MoM to microwave scattering from a rough surface, at first, many independent randomly rough surfaces with a rms height and a correlation length are generated with Gaussian random deviate. Then, an efficient Monte Carlo simulation technique is applied to estimate the scattering coefficients of the surfaces.

  • PDF

Electromagnetic Wave Propagation Characteristics from Large Scale Random Rough Surfaces (큰 규모의 불규칙 조면에 의한 전자파 전파 특성)

  • Yoon Kwang-Yeol;Chai Yong-Yoong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.393-399
    • /
    • 2006
  • In this paper we applied a ray tracing method to estimate the scattering characteristics from large scale random rough surfaces. For the electromagnetic field evaluation, we have used the diffracted coefficient of the knife edge diffraction for the diffracted rays and Fresnel's reflection coefficients in connection with reflected rays. In addition, we examine to search for the traced rays using the imaging method which can be obtained all rays to arrived at receivers accurately and the diffracted field from rough surfaces is considered. Numerical examples have been carried out for the scattering characteristics of an ocean wave-like rough surface and delay spread characteristics of a building-like surface. In the present work we have demonstrated that the ray tracing method is effective to numerical analysis of a rough surface scattering.

The contact fatigue life estimation between Rough surfaces by using mesoscopic fatigue criterion (Mesoscopic 피로이론을 이용한 거친 표면의 접촉피로 수명예측)

  • Chu Hyojun;Kim Taewan;Lee Sangdon;Cho Youngjoo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.53-59
    • /
    • 2004
  • Rough surfaces are taking into account to estimate the contact fatigue life. A computational methodology and the theoretical basis in this case is presented in this paper. Displacement solution technique by Cho and Love is applied to calculate the stress history beneath the surface subjected to loading. Mesoscopic multiaxial fatigue criterion is then applied to predict fatigue life. This fatigue criterion yields satisfactory results for non-proportional loading and can satisfactorily describe the physical mechanisms of crack initiation as well. As a result of analysis the relation between the life and the roughness as well as the most probable depth of the crack nucleation is discussed.

  • PDF

Local Path Plan for Unpaved Road in Rough Environment (야지환경의 비포장도로용 지역경로계획)

  • Lee, Young-Il;Choe, Tok Son;Park, Yong Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.726-732
    • /
    • 2013
  • It is required for UGV(Unmanned Ground Vehicle) to have a LPP(Local Path Plan) component which generate a local path via the center of road by analyzing binary map to travel autonomously unpaved road in rough environment. In this paper, we present the method of boundary estimation for unpaved road and a local path planning method based on RANGER algorithm using the estimated boundary. In specially, the paper presents an approach to estimate road boundary and the selection method of candidate path to minimize the problem of zigzag driving based on Bayesian probability reasoning. Field test is conducted with scenarios in rough environment in which bush, tree and unpaved road are included and the performance of proposed method is validated.

Intelligent information filtering using rough sets

  • Ratanapakdee, Tithiwat;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1302-1306
    • /
    • 2004
  • This paper proposes a model for information filtering (IF) on the Web. The user information need is described into two levels in this model: profiles on category level, and Boolean queries on document level. To efficiently estimate the relevance between the user information need and documents by fuzzy, the user information need is treated as a rough set on the space of documents. The rough set decision theory is used to classify the new documents according to the user information need. In return for this, the new documents are divided into three parts: positive region, boundary region, and negative region. We modified user profile by the user's relevance feedback and discerning words in the documents. In experimental we compared the results of three methods, firstly is to search documents that are not passed the filtering system. Second, search documents that passed the filtering system. Lastly, search documents after modified user profile. The result from using these techniques can obtain higher precision.

  • PDF

Design of Lateral Force Estimation Model for Rough Terrain Mobile Robot and Improving Estimation Reliability on Friction Coefficient (야지 주행 로봇을 위한 횡 방향 힘 추정 모델의 설계 및 마찰계수 추정 신뢰도의 향상)

  • Kim, Jiyong;Lee, Jihong;Joo, Sang Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • For a mobile robot that travels along a terrain consisting of various geology, information on tire force and friction coefficient between ground and wheel is an important factor. In order to estimate the lateral force between ground and wheel, a lot of information about the model and the surrounding environment of the vehicle is required in conventional method. Therefore, in this paper, we are going to estimate lateral force through simple model (Minimal Argument Lateral Slip Curve, MALSC) using only minimum data with high estimation accuracy and to improve estimation reliability of the friction coefficient by using the estimated lateral force data. Simulation is carried out to analyze the correlation between the longitudinal and transverse friction coefficients and slip angles to design the simplified lateral force estimation model by analysing simulation data and to apply it to the actual field environment. In order to verify the validity of the equation, estimation results are compared with the conventional method through simulation. Also, the results of the lateral force and friction coefficient estimation are compared from both the conventional method and the proposed model through the actual robot running experiments.

Wave-Current Friction in Rough Turbulent Flow (전난류에서 파랑과 해류의 마찰력)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.226-233
    • /
    • 1994
  • The present paper considers the method to estimate the bottom friction driven by waves and current on rough turbulent flow. Parameter adjusting technique is suggested for the computation of bed shear stress driven by uni-directional flow. and the value of parameter is determined by comparing the computational results against Bijker's laboratory data. For the computation of combined flow bottom shear stress, two methods are presented; one is the modified Bijker approach (BYO Model) and the other is the modified Fredsoe approach (FY Model). both of which are refined by the present writer. Both models are again refined in two aspects, and tested against the Bijker's laboratory data.

  • PDF

Bearing capacity of foundation on rock mass depending on footing shape and interface roughness

  • Alencar, Ana S.;Galindo, Ruben A.;Melentijevic, Svetlana
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.391-406
    • /
    • 2019
  • The aim of this paper was to study the influence of the footing shape and the effect of the roughness of the foundation base on the bearing capacity of shallow foundations on rock masses. For this purpose the finite difference method was used to analyze the bearing capacity of various types and states of rock masses under the assumption of Hoek-Brown failure criterion, for both plane strain and axisymmetric model, and considering smooth and rough interface. The results were analyzed based on a sensitivity study of four varying parameters: foundation width, rock material constant (mo), uniaxial compressive strength and geological strength index. Knowing how each parameter influences the bearing capacity depending on the footing shape (circular vs strip footing) and the footing base interface roughness (smooth vs rough), two correlation factors were developed to estimate the percentage increase of the ultimate bearing capacity as a function of the footing shape and the roughness of the footing base interface.