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VECTOR-VALUED INEQUALITIES FOR THE

COMMUTATORS OF SINGULAR INTEGRALS WITH

ROUGH KERNELS

Lin Tang and Huoxiong Wu

Abstract. In this paper, we establish the vector-valued inequalities for
the commutators of singular integrals with rough kernels. In particular,
our results can essentially improve some well-known results.

1. Introduction

Let Rn(n ≥ 2) be the n-dimensional Euclidean space and Sn−1 be the unit
sphere in Rn equipped with normalized Lebesgue measure dσ = dσ(x). Let Ω
be a homogeneous function of degree zero on Rn and Ω(x) ∈ Ls(Sn−1) (s ≥ 1),
and

(1.1)

∫
Sn−1

Ω(x) dσ(x) = 0.

The Calderón-Zygmund singular integral operator T is defined by

Tf(x) = p.v.

∫
Rn

Ω(y)

|y|n
f(x− y)dy,

where f ∈ C∞
0 (Rn).

In their fundamental work on singular integrals, Calderón and Zygmund
established the Lp boundedness of T for 1 < p < ∞ under the condition that
Ω ∈ L log+ L(Sn−1), i.e.,∫

Sn−1

|Ω(y)| log(2 + |Ω(y)|) dσ(y) < ∞.

The condition that Ω ∈ L log+ L(Sn−1) turns out to be most desirable size
condition for the Lp boundedness of T . This was made clear by Calderón and
Zygmund [5] where it was shown that T may fail to be bounded on Lp for any p
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if the condition Ω ∈ L log+ L(Sn−1) is replaced by any condition Ω ∈ Lϕ(Sn−1)
with a ϕ satisfying ϕ(t) = o(t log t) as t → ∞.

The block space B0,v
q (Sn−1) introduced by Lu et al. in [17], have some prop-

erties such as: Lq(Sn−1) ⊂ B0,v
q (Sn−1) (−1 ≤ v), B0,v1

q (Sn−1) ⊂ B0,v2
q (Sn−1)

for v1 > v2 and q > 1, and all inclusions are proper. But the spaces
L(logL)µ(Sn−1) and B0,µ−1

q (Sn−1) with 0 < µ do not contain each other.
Jiang and Lu [17] studies the Lp boundedness of singular integral operator T
with kernels belonging to certain block spaces. Recently, H. Al-Qassem and
Y. Pan [2] established the Lp estimates for singular integrals T provided that
Ω ∈ B0,0

q with q > 1.
On the other hand, the study of vector-valued inequalities for singular inte-

grals with rough kernels Ω ∈ Lq(Sn−1) with q > 1 attracted much attention;
see [13] and [22]. Naturally, it is an interesting problem whether we can es-
tablish the vector-valued inequalities for singular integrals with rough kernels
Ω satisfying weaker conditions. In fact, in this paper, we will consider the
vector-valued inequalities for a class of higher order commutators followed by
Tb,k is defined as follows

Tb,kf(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy,

where b ∈ BMO(Rn), k ∈ N and f ∈ C∞
0 (Rn).

A celebrated result of Coifman and Meyer [8] states that if Ω ∈ C1(Sn−1),
then for 1 < p < ∞, Tb,1 is bounded on Lp(Rn). When Ω ∈ ∪s>1L

s(Sn−1), by
a well-known result of Duoandikoetxea [9] and the Alvarez-Bagby-Kurtz-Pérez
boundedness criterion for the commutators of linear operator ([1], Theorem
2.13), we know that the operators Tb,k are bounded on Lp for 1 < p < ∞.
Recently, Hu [15] proved that if Ω ∈ L(logL)k+1(Sn−1), then the operators
Tb,k are bounded on Lp for 1 < p < ∞. In this paper, we will establish the
following results.

Theorem 1.1. Let Ω be homogeneous of degree zero and satisfy (1.1), k∈N and
b ∈ BMO(Rn), h(r) ∈ L∞(0,∞). If Ω ∈ L(logL)k+1(Sn−1)

∪
B0,k

∞ (Sn−1),
then the operators Th,b,k defined by

Th,b,kf(x) = p.v.

∫
Rn

h(|x− y|)Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy,

are bounded on Lp(lq) with bound Cp,q∥b∥kBMO(Rn) provided that 1 < p, q < ∞.

In addition, we also consider the following oscillatory singular integral com-
mutator T̄b,k defined by

T̄b,kf(x) = p.v.

∫
Rn

eip(x,y)
Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy,

where p(x, y) is a real polynomial on Rn × Rn, b ∈ BMO(Rn), k ∈ N and
f ∈ C∞

0 (Rn).
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Theorem 1.2. Let Ω be homogeneous of degree zero and satisfy (1.1), k ∈ N
and b ∈ BMO(Rn). If Ω ∈ L(logL)k+1(Sn−1)

∪
B0,k

∞ (Sn−1), then the op-
erators T̄b,k are bounded on Lp(lq) with bound Cp,q∥b∥kBMO(Rn) provided that

1 < p, q < ∞, where Cp,q is a constant which depends only on p, q and degree
of p(x, y) but not its coefficients.

We remark that Theorems 1.1 and 1.2 are also new even if in the case k = 0;
see [3], [7] and [6]. In particular, it is worth pointing out that the proof of
Theorem 1.1 is slightly different from [15], and we obtain Corollary 4.1 by
using Theorem 1.2, which improves the main results in [7].

The paper is organized as follows. In Section 2, we will give some preliminary
lemmas for Theorem 1.1. Next we will prove Theorem 1.1 in Section 1.3. The
proof of Theorem 1.2 will be given in Section 4.

Throughout this paper, C is a positive constant which is independent of
the main parameters and not necessary the same at each occurrence. For a
measure set E, denote by χE the characteristic function of E. For f defined

on Rn, f̂ denotes the Fourier transform of f .
We collect the notation to be used throughout this paper:

∥f∥Lp(lq) =

∫
Rn

∑
j∈Z

|fj(x)|q
p/q

dx


1/p

for f = {fj}j∈Z;

∥f∥p =

(∫
Rn

|f(x)|pdx
)1/p

and ∥f∥Lp(ω) =

(∫
Rn

|f(x)|pω(x)dx
)1/p

.

2. Some lemmas for Theorem 1.1

In this section, we fix a ≥ 2 and A,B > 0.

Lemma 2.1. Let ϕ ∈ C∞
0 (Rn) be a radial function such that suppϕ ⊂ {1/4 ≤

|ξ| ≤ 4} and ∑
l∈Z

ϕ3(a−lξ) = 1, |ξ| ̸= 0.

Define the multiplier operator Sl by

Ŝlf(ξ) = ϕ(a−l)f̂(ξ),

and S2
l by S2

l f(x) = Sl(Slf)(x). For any positive integer k and b ∈ BMO(Rn),
denote by Sl,b,k (respectively S2

l,b,k) the kth order commutator of Sl (respectively

S2
l ). Then for 1 < p, q < ∞,

(i) ∥(
∑
l∈Z

|Sl,b,kf |2)1/2∥Lp(lq) ≤ C(n, k, p, q)∥b∥kBMO(Rn)∥f∥Lp(lq),

(ii) ∥(
∑
l∈Z

|S2
l,b,kf |2)1/2∥Lp(lq) ≤ C(n, k, p, q)∥b∥kBMO(Rn)∥f∥Lp(lq),
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(iii) ∥
∑
l∈Z

Sl,b,kfl∥Lp(lq) ≤ C(n, k, p, q)∥b∥kBMO(Rn)∥(
∑
l∈Z

|fl|2)1/2∥Lp(lq).

The Lemma 2.1 follows from the weighted Littlewood-Paley theory, extre-
polation theorem and the main theorems in [1].

Lemma 2.2. Suppose {σj}j∈Z is a sequence of Borel measures in Rn. Write
σj,b,0f(x) = σj ∗ f(x), and for k ∈ N,

σj,b,kf(x) = b(x)σj,b,k−1f(x)− σj,b,k−1(bf)(x).

Suppose for any 1 < p, q < ∞ such that

∥µ∗
b,kf∥Lp(lq) + ∥µ̄∗

b̄,kf∥Lp(lq) ≤ CB∥b∥kBMO(Rn)∥f∥Lp(lq),

where µ̄∗
b̄,k

f(x) = sup
j∈Z

|µ̄j,b̄,kf(x)|, µj = |σj |, µ̄j(x) = |σj |(−x) and b̄(x) =

b(−x). Then the following vector valued inequality

∥(
∑
j∈Z

|σj,b,kfj |2)1/2∥Lp(lq) ≤ C(n, k, p, q)B∥b∥kBMO(Rn)∥(
∑
j∈Z

|fj |2)1/2∥Lp(lq)

holds for 1 < p, q < ∞.

Proof. We borrow some ideas from [10]. Since sup
j∈Z

|σj,b,kfjl| ≤ µ∗
b,k(sup

j∈Z
|fjl|),

we then have ∥∥∥∥∥∥
(∑

l∈Z

(
sup
j∈Z

|σj,b,kfjl|
)q
)1/q

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
(∑

l∈Z

(
µ∗
b,k(sup

j∈Z
|fjl|)

)q
)1/q

∥∥∥∥∥∥
p

≤ C(n, k, p, q)B∥b∥kBMO(Rn)

∥∥∥∥∥∥
(∑

l∈Z

(
sup
j∈Z

|fjl|
)q
)1/q

∥∥∥∥∥∥
p

.

On the other hand, there exists a sequence {hj} ∈ Lp′
(lq

′
) such that∥∥∥∥∥∥∥

∑
l∈Z

∑
j∈Z

|σj,b,kfjl|

q1/q
∥∥∥∥∥∥∥
p

≤ sup
∥h∥

Lp′ (lq′ )≤1

∣∣∣∣∣∣
∑
l∈Z

∫
Rn

∑
j∈Z

|σj,b,kfjl|hl(x)dx

∣∣∣∣∣∣
≤ sup

∥h∥
Lp′ (lq′ )≤1

∑
l∈Z

∫
Rn

∑
j∈Z

|fj,l(x)|µ̄∗
b̄,khl(x)dx
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≤ C(n, k, p, q)B∥b∥kBMO(Rn)

∥∥∥∥∥∥∥
∑

l∈Z

∑
j∈Z

|fjl|

q1/q
∥∥∥∥∥∥∥
p

,

where p′ = p/(p− 1) and q′ = q/(q − 1).
Interpolating between above inequalities, we get∥∥∥∥∥∥∥∥

∑
l∈Z

∑
j∈Z

|σj,b,kfjl|2
q/2


1/q
∥∥∥∥∥∥∥∥
p

≤ CB∥b∥kBMO(Rn)

∥∥∥∥∥∥∥∥
∑

l∈Z

∑
j∈Z

|fjl|2
q/2


1/q
∥∥∥∥∥∥∥∥
p

.

Thus, Lemma 2.2 is proved. □

Lemma 2.3 (See [14, 15, 16]). Let mδ ∈ C1(Rn)(0 < δ < ∞) be a family of
multipliers such that supp mδ ⊂ {|ξ| < δ} and for some constants C and α,

∥mδ∥∞ ≤ CAmin{δ−α, δα}, ∥∇mδ∥∞ ≤ CA.

Let Tδ be the multiplier operator defined by T̂δf(ξ) = mδ(ξ)f̂(ξ). For positive
integer k and b ∈ BMO(Rn), denote by Tδ,b,k the kth order commutator of Tδ.
Then for any 0 < µ < 1, there exists a positive constant C = C(n, k, µ) such
that

∥Tδ,b,kf∥2 ≤ CAα−k∥b∥kBMO(Rn) min{δ−αµ, δαµ}∥f∥2.

Lemma 2.4. Let {σj}j∈Z be a sequence of finite Borel measure in Rn. Suppose
for j ∈ Z,

(2.1) ∥σj∥ ≤ CA, ∥∇σ̂j∥∞ ≤ CAaj

and there exists a positive constant 0 < α < 1 such that

|σ̂j(ξ)| ≤ CAmin{|ajξ|, |ajξ|−α/ ln a}.

Suppose k ∈ N and nonnegative integer h ≤ k such that for any 1 < p, q < ∞

∥µ∗
b,hf∥Lp(lq) + ∥µ̄∗

b̄,hf∥Lp(lq) ≤ CB∥b∥hBMO(Rn)∥f∥Lp(lq).

Then,

Tb,kf(x) =
∑
j∈Z

σj,b,kf(x)

is a bounded operator in Lp(lq) with bound

C(n, k, p, q)(A(ln a)k)θp,qB1−θp,q∥b∥kBMO(Rn),

where 0 < θp,q < 1 depending only on p and q.
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Proof. Choose a radial function ϕ ∈ C∞
0 (Rn) such that 0 ≤ ϕ ≤ 1, supp ϕ ⊂

{1/4 ≤ |ξ| ≤ 4} and ∑
l∈Z

ϕ3(a−l|ξ|) = 1, |ξ| ̸= 0.

Define the multiplier operator Sl by

Ŝlf(ξ) = ϕ(a−lξ)f̂(ξ).

Set mj(ξ) = σ̂j(ξ), ml
j(ξ) = mj(ξ)ϕ(a

j−lξ), and by (2.1), we have

T̂ l
jf(ξ) = ml

j(ξ)f̂(ξ).

Obviously, suppml
j(a

−jξ) ⊂ {|ξ| ≤ 2al} and

(2.2) |ml
j(a

−jξ)| ≤ CAmin{al, a−lα/ ln a}, ∥∇ml
j(a

−j ·)∥∞ ≤ CA.

Let T̄ l
j be the operator defined bŷ̄

T l
jf(ξ) = ml

j(a
−jξ)f̂(ξ).

The inequality (2.2) via Lemma 2.3 says that for 0 < µ < 1,

∥T̄ l
j,b,kf∥2 ≤ CµA(ln a)

ka−αµ|l|/ ln a∥b∥kBMO(Rn)∥f∥2.

If b ∈ BMO(Rn), then bt(x) = b(tx) ∈ BMO(Rn) and ∥bt∥BMO(Rn) =
∥b∥BMO(Rn) for any t > 0. By dilation invariance, we have

(2.3) ∥T l
j,b,kf∥2 ≤ CµA(ln a)ka−αµ|l|/ ln a∥b∥kBMO(Rn)∥f∥2.

On the other hand, using Plancherel theorem, we have

(2.4) ∥T l
jf∥2 ≤ CµA(ln a)

ka−αµ|l|/ ln a∥f∥2.

We know from [15] that for any f, g ∈ C∞
0 (Rn),∫

Rn

g(x)Tb,kf(x) dx =

∫
Rn

g(x)
∑
l∈Z

∑
j∈Z

((Sl−jT
l
jSl−j)b,kf)(x) dx.

With the aid of the formula

(b(x)− b(y))k =
k∑

i=0

Ci
k(b(x)− b(z))i(b(z)− b(y))k−i, x, y, z ∈ Rn.

Let

Ulf(x) =
∑
j∈Z

((Sl−jT
l
jSl−j)b,kf)(x).

It is easy to see that

((Sl−jT
l
jSl−j)b,kf)(x) =

k∑
i=0

Ci
kSl−j,b,k((T

l
jSl−j)b,if)(x).
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Furthermore,

(2.5) (T l
jSl−j)b,if(x) =

i∑
h=0

Ci
hT

l
j,b,h(Sl−j,b,i−hf)(x).

From (2.3), (2.4) and (2.5), we get

∥(
∑
j∈Z

|(T l
jSj−l)b,if |2)

1
2 ∥22

≤ CA(ln a)ka−αµ|l|/ ln a
k∑

i=0

∥b∥2hBMO(Rn)

∑
j∈Z

∥Sl−j,b,i−hf∥22

≤ CA(ln a)ka−αµ|l|/ ln a
k∑

i=0

∥b∥2iBMO(Rn)∥f∥
2
2.

Hence,

(2.6) ∥Ulf∥L2(l2) ≤ CA(ln a)ka−αµ|l|/ ln a∥b∥kBMO(Rn)∥f∥L2(l2).

Now let us turn to prove the Lp(lq)-boundedness of Ul. Write

(T l
jSl−j)b,if(x) =

i∑
h=0

Ci
hσj,b,h(S

2
l−j,b,i−hf)(x).

Applying Lemmas 2.1 and 2.2, for any 1 < p, q < ∞, then we have

(2.7)

∥Ulf∥Lp(lq) ≤ C

k∑
i=0

∥b∥k−i
BMO(Rn)∥(

∑
j∈Z

|(T l
jSj−l)b,if |2)

1
2 ∥Lp(lq)

≤ C
k∑

i=0

∥b∥k−i
BMO(Rn)

i∑
h=0

∥(
∑
j∈Z

|σj,b,h(S
2
j−l,b,i−hf)|2)

1
2 ∥Lp(lq)

≤ C

k∑
i=0

i∑
h=0

∥b∥k−i+h
BMO(Rn)∥(

∑
j∈Z

|S2
j−l,b,i−hf |2)

1
2 ∥Lp(lq)

≤ CB∥b∥kBMO(Rn)∥f∥Lp(lq).

In particular, we have

(2.8) ∥Ulf∥L2(lq) ≤ CB∥b∥kBMO(Rn)∥f∥L2(lq).

Interpolating (2.6) and (2.8) for 1 < q < ∞, there exists a constant 0 < θq < 1
depending only on q such that
(2.9)

∥Ulf∥L2(lq) ≤ C(n, k, p, q)(A(ln a)k)θqB1−θqa−θqαµ|l|/ ln a∥b∥kBMO(Rn)∥f∥L2(lq).

Now, interpolating (2.7) and (2.9), for 1 < p < ∞, there exists a constant
0 < θp,q < 1 depending only on p, q such that

∥Ulf∥Lp(lq)



710 LIN TANG AND HUOXIONG WU

≤ C(n, k, p, q)(A(ln a)k)θp,qB1−θp,qa−θp,qαµ|l|/ ln a∥b∥kBMO(Rn)∥f∥Lp(lq).

Hence, we have

∥Tb,kf∥Lp(lq) ≤ C(n, k, p, q)(A(ln a)k)θp,qB1−θp,q∥b∥kBMO(Rn)∥f∥Lp(lq).

This completes the proof of Lemma 2.4. □

3. The proof of Theorem 1.1

To prove Theorem 1, we consider two cases on Ω.

Case 1. When Ω ∈ L(logL)k+1(Sn−1). As in [3], let Ω be an integrable
function on Sn−1 satisfying (1.1). Let Em = {y ∈ Sn−1 : 2m < |Ω(y)| ≤ 2m+1}
for m ∈ N and

A(Ω) = {m ∈ N : σ(Em) > 2−4m}.
For each m ∈ A(Ω), let

Ωm = ∥Ω∥−1
L1(Em)[ΩχEm −

∫
Em

Ω dσ].

Then the following hold for all m in A(Ω):∫
Sn−1

Ωmdσ = 0;

∥Ωm∥L1(Sn−1) ≤ 2;

∥Ωm∥L2(Sn−1) ≤ 22m+2.

In addition, we have the following decomposition

(3.1) Ω = Ω0 +
∑

m∈A(Ω)

∥Ω∥L1(Em)Ωm,

where Ω0 ∈ L2(Sn−1) and satisfies∫
Sn−1

Ω0 dσ = 0.

For each m ∈ A(Ω)
∪
{0}, we define

T
(m)
j,b,kf(x) = p.v

∫
Rn

h(|x− y|)Ωm(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy.

From (3.1), we know that

(3.2) Th,b,kf(x) = T
(0)
b,k f(x) +

∑
m∈A(Ω)

∥Ω∥L1(Em)T
(m)
b,k f(x).

For m ∈ A(Ω), let {σ(m)
j }j∈Z be the sequence of measure defined by∫

Rn

fdσ
(m)
j =

∫
2m(j−1)≤|y|<2mj

h(|y|)f(y)Ωm(y)

|y|n
dy,



VECTOR-VALUED INEQUALITIES 711

and ∫
Rn

fdσ
(0)
j =

∫
2j−1≤|y|<2j

h(|y|)f(y)Ω0(y)

|y|n
dy.

Let |σ(m)
j | be defined in the same way as σ

(m)
j , but with Ωm replaced by |Ωm|.

Al-Salman and Pan [3] proved the following result.

Lemma 3.1. Let h ∈ L∞(0,∞). Then there exist constant α > 0 and C such
that ∣∣∣(σ(m)

j )(̂ξ)
∣∣∣+ ∣∣∣(|σ(m)

j |)(̂ξ)
∣∣∣ ≤ Cm(2mj |ξ|)−α/m, m ∈ A(Ω),

and ∣∣∣(σ(0)
j )(̂ξ)

∣∣∣+ ∣∣∣(|σ(0)
j |)(̂ξ)

∣∣∣ ≤ C(2j |ξ|)−α.

On the other hand, it is easy to see that

(3.3)
∣∣∣(σ(m)

j )(̂ξ)
∣∣∣ ≤ Cm2mj |ξ|, m ∈ A(Ω),

(3.4)
∣∣∣∇(σ

(m)
j )(̂ξ)

∣∣∣+ ∣∣∣∇(|σ(m)
j |)(̂ξ)

∣∣∣ ≤ Cm2mj , m ∈ A(Ω),

(3.5)
∣∣∣(σ(0)

j )(̂ξ)
∣∣∣ ≤ C2j |ξ|,

(3.6)
∣∣∣∇(σ

(0)
j )(̂ξ)

∣∣∣+ ∣∣∣∇(|σ(0)
j |)(̂ξ)

∣∣∣ ≤ C2j ,

and

(3.7) ∥σ(m)
j ∥ ≤ Cm, m ∈ A(Ω), ∥σ(0)

j ∥ ≤ C.

We will also need the following key lemma.

Lemma 3.2. Let k ∈ N and b ∈ BMO(Rn), Ω̄ be homogeneous of degree zero
and belong to L∞(Sn−1). Define the operator MΩ̄,b,k by

MΩ̄,b,kf(x) = sup
r>0

r−n

∫
|x−y|<r

|b(x)− b(y)|k|Ω̄(x− y)f(y)|dy.

If Ω̄ ∈ L∞(Sn−1), then the maximal operator MΩ̄,b,k is bounded on Lp(lq) with
bound Cp,qλΩ̄,k∥b∥BMO(Rn) for 1 < p, q < ∞, where λΩ̄,k defined by

λΩ̄,k = inf{λ > 0 :
∥Ω̄∥1
λ

logk(2 +
∥Ω̄∥∞
λ

) ≤ 1},

where ∥Ω̄∥1 = ∥Ω̄∥L1(Sn−1) and ∥Ω̄∥∞ = ∥Ω̄∥L∞(Sn−1).

Proof. As in [15], without loss of generality, we may assume that λΩ̄,k = 1. It
is obvious that

∥Ω̄∥1 logm(2 + ∥Ω̄∥∞) ≤ 1.

Let ϕ̃k(t) = t logk(2 + t) for t > 0. Then

∥ϕ̃k(|Ω̄|)∥1 ≤ 1.
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Thus,

MΩ̄,b,kf(x) ≤ sup
r>0

r−n

∫
|x−y|<r

ϕ̃k(|Ω̄(x− y)|)|f(y)|dy

+C sup
r>0

r−n

∫
|x−y|<r

ϕ̃k(|Ω̄(x− y)|)e|b(x)−b(y)||f(y)|dy

≤ sup
r>0

r−n

∫
|x−y|<r

ϕ̃k(|Ω̄(x− y)|)|f(y)|dy

+C sup
r>0

r−n

∫
|x−y|<r

eb(x)−b(y)|f(y)|dy

+C sup
r>0

r−n

∫
|x−y|<r

eb(y)−b(x)|f(y)|dy

:= I(f)(x) + II(f)(x) + III(f)(x).

For the first term, by the method of rotation of Calderón and Zygmund [5] and
the vector-valued inequality of Hardy-Littlewood maximal operator of Feffer-
man and Stein [11], we obtain

∥I(f)∥Lp(lq) ≤ C∥ϕ̃k(|Ω̄|)∥1∥f∥Lp(lq).

It remains two terms. By the John-Nireberg inequality, we know that there
exist positive constants A and B such that for any cube Q,

1

|Q|

∫
Q

exp

(
|b(x)− bQ|

A∥b∥BMO(Rn)

)
dx ≤ B,

where bQ is the mean value of b on the cube Q. Let C1 = (Amax{p, p′})−1.
Straightforward computation shows that for real-valued b ∈ BMO(Rn) with
∥b∥BMO(Rn) = C1,

1

|Q|

∫
Q

ep(b(x)−bQ)dx ≤ B,
1

|Q|

∫
Q

e−p′(b(x)−bQ)dx ≤ B,

and so epb(x) ∈ Ap(the Muckenhoupt weight class) with the Ap constant no
more that C2 = Bp. By the weighted vector-valued inequality for the Hardy-
Littlewood maximal operator (see [4]), we have

∥II(f)∥Lp(lq) + ∥III(f)∥Lp(lq) ≤ C∥f∥Lp(lq).

Then

∥MΩ̄,b,kf∥Lp(lq) ≤ C∥f∥Lp(lq).

Lemma 3.2 is proved. □

Let us prove Theorem 1.1 continuously. Let µ
(m)
t = |σ(m)

t |, µ̄(m)
t = |σ(m)

t |(−x)
and b̄(x) = b(−x), define the maximal operator by

(σ(m)f)∗b,k(x) = sup
j∈Z

µ
(m)
j,b,k|f |(x) and (σ̄(m)f)∗b̄,k(x) = sup

j∈Z
µ̄
(m)

j,b̄,k
|f |(x).
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By Lemma 3.2, for nonnegative integer h ≤ k, we have

∥(σ(m)f)∗b,h∥Lp(lq) + ∥(σ̄(m)f)∗
b̄,h

∥Lp(lq) ≤ mλΩm,h∥b∥hBMO(Rn)∥f∥Lp(lq)

≤ Cmk+1∥b∥hBMO(Rn)∥f∥Lp(lq).

Let Am = m, am = 2m and Bm = mk+1, from (3.3)-(3.7) and applying Lemmas
2.4 and 3.1, we get for 1 < p, q < ∞,

(3.8) ∥T (0)
b,k f∥Lp(lq) ≤ C∥b∥kBMO(Rn)∥f∥Lp(lq),

and

(3.9) ∥T (m)
b,k f∥Lp(lq) ≤ Cmk+1∥b∥kBMO(Rn)∥f∥Lp(lq), m ∈ A(Ω).

Finally, by (3.2), (3.8) and (3.9), we obtain for 1 < p, q < ∞

∥Th,b,kf∥Lp(lq) ≤ C(∥T (0)
b,k f∥Lp(lq) +

∑
m∈A(Ω)

∥Ω∥L1(Em)∥T
(m)
b,k f∥Lp(lq))

≤ C∥b∥kBMO(Rn)(∥f∥Lp(lq) +
∑

m∈A(Ω)

mk+1∥Ω∥L1(Em)∥f∥Lp(lq))

≤ C∥b∥kBMO(Rn)(1 + ∥Ω∥L(logL)k+1(Sn−1))∥f∥Lp(lq).

Thus, Theorem 1.1 is established if Ω ∈ L(logL)k+1(Sn−1).

Case 2. When Ω ∈ B0,k
∞ (Sn−1). Let us begin with the definition of q-block

functions on Sn−1. We say that a measurable function b on Sn−1 is a q-block
if it satisfies the following:

(i) supp(b) ⊂ I, where and I is an interval on Sn−1; i.e.,

I = {x′ ∈ Sn−1 : |x′ − x′
0| < ρ} for some x′

0 ∈ Sn−1, ρ > 0.

(ii) ∥b∥q ≤ |I|−1/q′ , where 1/q + 1/q′ = 1.

The function space B0,v
q (Sn−1)(v ≥ −1), 1 < q ≤ ∞, consists of all functions

Ω ∈ L1(Sn−1) of the form Ω =
∑∞

µ=1 cµbµ where cµ ∈ C, bµ is a q-block

supported in an interval Iµ on Sn−1 for each µ, and

(3.10) M0,v
q ({cµ}) =

∞∑
µ=1

|cµ|(1 + (log |Iµ|−1)v+1) < ∞.

For a q-block function b on Sn−1 supported in an interval I with q > 1 and
∥b∥q ≤ |I|−1/q′ we define the function b̄ on Sn−1 by

(3.11) b̄(x) = b(x)−
∫
Sn−1

b(u)dσ(u).

Then one can easily see that b̄ enjoys the following properties:

(3.12)

∫
Sn−1

b̄(u)dσ(u) = 0;

(3.13) ∥b̄∥q ≤ 2|I|−1/q′ ;
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(3.14) ∥b̄∥1 ≤ 2.

Let b̄ be a blocklike function defined as in (3.11). Define the measures {σb̄:j}j∈Z
by ∫

Rn

fdσb̄,j =

∫
2j−1≤|u|<2j

f(u)
b̄(u)

|u|n
h(|u|)du.

These measures will be useful only in the case |I| ≥ e−2 where I is the support
of b. On the other hand, for the case |I| < e−2 we need to define the following
measures. ∫

Rn

fdλb̄,j =

∫
wj−1≤|u|<wj

f(u)
b̄(u)

|u|n
h(|u|)du,

where w = 2[log(|I|
−1)], |I| < e−2 and [·] denotes the greatest integer function.

Lemma 3.3 (See [3]). Let b̄ be a function defined as in (3.11). If |I| < e−2,
then there are 0 < α < 1 and C > 0 such that∣∣∣λ̂b,j(ξ)

∣∣∣ ≤ C log(|I|−1)(wj |ξ|)−
α

log(|I|−1) .

By assumption, Ω can be written as Ω =
∑∞

µ=1 cµbµ where cµ ∈ C, bµ is a

∞-block supported in an interval Iµ on Sn−1 and M0,k
q ({cµ}) satisfies (3.10).

For each µ = 1, 2, . . . , let b̄µ be the blocklike function corresponding to bµ. By
the vanishing condition on Ω we have

Ω =
∞∑

µ=1

cµb̄µ

and hence

∥Th,b,kf∥Lp(lq) ≤
∞∑

µ=1

|cµ|∥Th,µ,b,kf∥Lp(lq),

where

Th,µ,b,kf(x) = p.v.

∫
Rn

h(|x− y|) b̄µ(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy.

Let {σj}j∈Z be the sequence of measure defined by∫
Rn

fdσj =

∫
2j−1≤|y|<2j

h(|y|)f(y) b̄µ(y)
|y|n

dy.

Then by (3.11)-(3.14) we have

∥σj∥+ ∥|σj |∥ ≤ C;∣∣∣∇(σj)(̂ξ)
∣∣∣+ ∣∣∣∇(|σj |)(̂ξ)

∣∣∣ ≤ C2j ;∣∣∣(σj)(̂ξ)
∣∣∣+ ∣∣∣(|σj |)(̂ξ)

∣∣∣ ≤ C(2j |ξ|)−α;∣∣∣(σj)(̂ξ)
∣∣∣ ≤ C2j |ξ|
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for |Iµ| ≥ e−2. Also, by (3.11)-(3.14) and Lemma 3.3, we have

∥λµ
j ∥+ ∥|λµ

j |∥ ≤ CAµ;∣∣∣∇(λµ
j )(̂ξ)

∣∣∣+ ∣∣∣∇(|λµ
j |)(̂ξ)

∣∣∣ ≤ CAµa
j
µ;∣∣∣(λµ

j )(̂ξ)
∣∣∣+ ∣∣∣(|λµ

j |)(̂ξ)
∣∣∣ ≤ CAµ(ω

j
µ|ξ|)−α/ logωµ ;∣∣∣(λµ

j )(̂ξ)
∣∣∣ ≤ CAµω

j
µ|ξ|,

where Aµ = [log(|Iµ|−1)]k+1 and |Iµ| < e−2.
Let σµ

j = |λµ
j |, σ̄

µ
j (x) = |λµ

j |(−x) and b̄(x) = b(−x), define the maximal
operator by

σ∗
µ,b,kf(x) = sup

j∈Z
σµ
j,b,k|f |(x) and σ̄∗

µ,b̄,kf(x) = sup
j∈Z

σ̄µ

j,b̄,k
|f |(x).

If nonnegative integer h ≤ k, by Lemma 3.2, we get for any 1 < p, q < ∞,

∥σ∗
µ,b,hf∥Lp(lq) + ∥σ̄∗

µ,b̄,hf∥Lp(lq)

≤ C[log(1/|Iµ|+ 2)]λΩIµ,h
∥b∥hBMO(Rn)∥f∥Lp(lq)

≤ C[log(1/|Iµ|+ 2)]([log(1/|Iµ|+ 2)]h∥Ω∥1 + 1)∥b∥hBMO(Rn)∥f∥Lp(lq)

≤ C[log(1/|Iµ|+ 2)]k+1∥b∥hBMO(Rn)∥f∥Lp(lq).

From these, by Lemmas 2.2, 2.3 and 2.4, we obtain

∥Th,µ,b,kf∥Lp(lq) ≤ C[log(1/|Iµ|+ 2)]k+1∥f∥Lp(lq).

Hence, Theorem 1.1 is proved.
Next we give a result in the case k = 0 of Theorem 1.1.

Theorem 3.1. Let Ω be homogeneous of degree zero and satisfy (1.1), s ∈ R
and 1 < p, q < ∞, h(r) ∈ L∞(0,∞). If Ω ∈ B0,0

r (Sn−1) with r > 1, then the
operators Th defined by

Thf(x) = p.v.

∫
Rn

h(|x− y|)Ω(x− y)

|x− y|n
f(y)dy,

are bounded on Lp(lq) with bound Cp,q.

Adapting the proof of Theorem 1.1, Theorem 3.1 is directly deduced by the
following fact that (see [6]): Let Ω ∈ L1(Sn−1) and 1 < p, q < ∞. Then
(3.15)∥∥∥∥∥∥∥

∑
j∈Z

|MΩ(fj)|q
1/q

∥∥∥∥∥∥∥
Lp(Rn)

≤ Cp,q∥Ω∥L1(Sn−1)

∥∥∥∥∥∥∥
∑

j∈Z

|fj |q
1/q

∥∥∥∥∥∥∥
Lp(Rn)

,

where Cp,q is independent of fj for all j ∈ Z and MΩ defined by

MΩf(x) = sup
r>0

1

rn

∫
|x−y|<r

|Ω(x− y)f(y)|dy.
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4. The proof of Theorem 1.2

To prove Theorem 1.2, we will need the following lemmas.

Lemma 4.1. Let k ∈ N and Ω ∈ L(logL)k(Sn−1)
∪
B0,k−1

∞ (Sn−1) be homo-
geneous of degree zero. Suppose that b ∈ BMO(Rn) and 1 < p, q < ∞. Then
there exists a positive constant C such that

∥MΩ,b,kf∥Lp(lq) ≤ C∥b∥kBMO(Rn)∥f∥Lp(lq),

where MΩ,b,kf(x) = supr>0 r
−n
∫
|x−y|<r

|Ω(x− y)[b(x)− b(y)]kf(y)| dy.

Proof. If Ω ∈ L(logL)k(Sn−1), write

Ωl(x) = Ω(x)χEl(x)

with
E0 = {x ∈ Sn−1 : |Ω(x)| < 1},

El = {x ∈ Sn−1 : 2l−1 ≤ |Ω(x)| < 2l}, l ∈ N.
By Lemma 3.2, we have

∥MΩl,b,k∥Lp(lq) ≤ CλΩl,k
∥b∥kBMO(Rn)∥f∥Lp(lq).

Hence,

∥MΩ,b,k∥Lp(lq) ≤ C
∑
l≥0

λΩl,k
∥b∥kBMO(Rn)∥f∥Lp(lq) ≤ C∥b∥kBMO(Rn)∥f∥Lp(lq),

where we use the following fact that (see [15])∑
l≥0

λΩl,k
≤ C(1 + ∥Ω∥L(logL)k(Sn−1)).

If Ω ∈ B0,k−1
∞ (Sn−1), without loss of generality, we assume Ω ⊂ I is a

∞-block. By Lemma 3.2, we have

∥MΩ,b,k∥Lp(lq) ≤ C[log(1/|I|+ 2)]k∥f∥Lp(lq).

This completes the proof. □
Lemma 4.2. Let k ∈ N and Ω ∈ L(logL)k(Sn−1)

∪
B0,k−1

∞ (Sn−1) be homoge-
neous of degree zero. Suppose that b ∈ BMO(Rn), k ∈ N and 1 < p, q < ∞. If
the operator

Tb,kf(x) = p.v.

∫
Rn

k(x, y)[b(x)− b(y)]kf(y)dy

is bounded on Lp(lq) with bound CB∥b∥kBMO(Rn), and k(x, y) satisfies

|k(x, y)| ≤ |Ω(x− y)|
|x− y|n

,

then the truncated operator

T 1
b,kf(x) =

∫
|x−y|<1

k(x, y)[b(x)− b(y)]kf(y)dy
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is bounded on Lp(lq) with bound C(B + 1)∥b∥kBMO(Rn).

Proof. Without loss of generality, we may assume that ∥b∥BMO(Rn) = 1. For
each fixed h ∈ Rn, we split f = f1 + f2 + f3, where

f1(y) = f(y)χ|y−h|<1/2(y), f2(y) = f(y)χ1/4<|y−h|<5/4(y).

It is easy to verify that if |x− h| < 1/4, then

Tb,kf1(x) = T 1
b,kf1(x) =

∫
|x−y|<1

k(x, y)[b(x)− b(y)]kf1(y)dy.

Thus ∫
|x−h|<1/4

 ∞∑
j=1

|T 1
b,kf1j(x)|q

p/q

dx ≤ Bp∥b∥pkBMO(Rn)∥f1∥
p
Lp(lq).

If |x− h| < 1/4 and 1/2 ≤ |y − h| < 5/4, then 1/4 < |x− y| < 3/2. So we see
that for |x− h| < 1/4,

|T 1
b,kf2(x)| ≤

∫
1/4<|x−y|<3/2

|Ω(x− y)|
|x− y|n

|[b(x)−b(y)]kf2(y)|dy ≤ CM3/2,b,kf2(x).

Lemma 4.1 now tells us that∫
|x−h|<1/4

 ∞∑
j=1

|T 1
b,kf2j(x)|q

p/q

dx ≤ C∥b∥pkBMO(Rn)∥f2∥
p
Lp(lq).

Obviously, we have T 1
b,kf3(x) = 0 for |x − h| < 1/4. Combining the above

inequalities leads to

∫
|x−h|<1/4

 ∞∑
j=1

|T 1
b,kf1j(x)|q

p/q

dx

≤ C(1 +Bp)∥b∥pkBMO(Rn)

∫
|x−h|<2

 ∞∑
j=1

|fj(x)|q
p/q

dx.

Integrating the last inequality with respect to h gives

∥T 1
b,kf∥Lp(lq) ≤ C(B + 1)∥b∥kBMO(Rn)∥f∥Lp(lq).

This completes the proof of Lemma 4.2. □

Proof of Theorem 1.2. Without loss of generality, we may assume that ∥b∥BMO

= 1. We shall argue induction on the degree of the polynomial in x and y. If the
polynomial p(x, y) = P1(x) + P2(y), Theorem 1.2 is obvious by Theorem 1.1.
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Let u and v be two positive integers and suppose the polynomial has degree u
in x and v in y. Write

p(x, y) =
∑

|α|≤u,|β|≤v

aα,βx
αyβ .

By dilation invariance, we may assume that
∑

|α|=u,|β|=v |aαβ | = 1. Decompose

T̄b,kf(x) =

∫
|x−y|<1

eip(x,y)
Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy

+
∞∑
d=1

∫
2d−1≤|x−y|<2d

eip(x,y)
Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy

= T0f(x) +

∞∑
d=1

Tdf(x).

We first consider T0. We claim that

(4.1) ∥T0f∥Lp(lq) ≤ C∥f∥Lp(lq).

We assume that (4.1) holds for all polynomials which are sums of monomials
of degree less than u in x times monomials of any degree in y, together with
monomials which are of degree u in x times monomials which are of degree less
than v in y. Rewrite

p(x, y) =
∑

|α|=u,|β|=v

aαβ(x
αyβ − yα+β) + p0(x, y),

where p0(x, y) satisfies the inductive assumption. It follows that

T0f(x) =

∫
|x−y|<1

eip0(x,y)
Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy

+

∫
|x−y|<1

(eip(x,y) − eip0(x,y))
Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy

= T 1
0 f(x) + T 2

0 f(x).

Using inductive assumption based on Theorem 1.1 and Lemma 4.2, we have

∥T 1
0 f∥Lp(lq) ≤ C∥f∥Lp(lq).

Set f̄(y) = f(y)χ{|y|≤2}. It is easy to see T 2
0 f(x) = T 2

0 f̄(x) for |x| ≤ 1. Thus,
when |x| ≤ 1,

T 2
0 f(x) ≤ C

∫
|x−y|<1

|Ω(x− y)|
|x− y|n−1

|[b(x)− b(y)]kf̄(y)|dy

≤ C
0∑

d=−∞

2d2−dn

∫
2d−1≤|x−y|<2d

|Ω(x− y)||b(x)− b(y)|k|f̄(y)| dy
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≤ C

0∑
d=−∞

2dM2d,b,kf̄(x).

By Lemma 4.1, we get∫
|x|≤1

 ∞∑
j=1

|T 2
0 fj(x)|q

p/q

dx


1/p

≤ C

0∑
d=−∞

2d∥M2d,b,kf̄∥Lp(lq)

≤ C

0∑
d=−∞

2d∥f̄∥Lp(lq)

≤ C

∫
|y|≤2

 ∞∑
j=1

|fj(y)|q
p/q

dy


1/p

,

from which the same argument as that in p. 189 of [20] shows that the inequality∫
|x−h|≤1

 ∞∑
j=1

|T 2
0 fj(x)|q

p/q

dx


1/p

≤ C

∫
|y−h|≤2

 ∞∑
j=1

|fj(y)|q
p/q

dy


1/p

holds for all h ∈ Rn and C > 0 is independent of h. Integrating the last
inequality with respect to h and using Hölder’s inequality, we finally obtain

∥T 2
0 f∥Lp(lq) ≤ C∥f∥Lp(lq).

Now we return to consider Td, d ≥ 1. we consider two cases on Ω.

Case 1. When Ω ∈ L(logL)k+1(Sn−1). Split

Tdf(x) =
∞∑
l=0

T b,k
d,l f(x),

where

T b,k
d,l f(x) =

∫
2d−1≤|x−y|<2d

eip(x,y)
Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy,

Ωl(x) = Ω(x)χEl(x)

with
E0 = {x ∈ Sn−1 : |Ω(x)| < 1},

El = {x ∈ Sn−1 : 2l−1 ≤ |Ω(x)| < 2l}, l ∈ N.
Set ∥Ω∥r = ∥Ω∥Lr(Sn−1) for 1 ≤ r ≤ ∞ in the rest of this section. If we can
prove that for some δ > 0,

(4.2) ∥T b,k
d,l f∥Lp(lq) ≤ C2−δd∥Ωl∥∞∥f∥Lp(lq),

and

(4.3) ∥T b,k
d,l f∥Lp(lq) ≤ CλΩl,k∥f∥Lp(lq),
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then, for a suitably chosen integer M > δ−1, we have

∥
∞∑
l=0

T b,k
d,l f∥Lp(lq)

≤
∞∑
d=1

∞∑
l=0

∥T b,k
d,l f∥Lp(lq)

=
∞∑
d=1

∥T b,k
d,0 f∥Lp(lq) +

∞∑
l=1

∑
1≤d<Ml

∥T b,k
d,l f∥Lp(lq) +

∞∑
l=1

∑
d≥Ml

∥T b,k
d,l f∥Lp(lq)

≤ C∥Ω0∥∞∥f∥Lp(lq) + C
∞∑
l=1

lλΩl,k∥f∥Lp(lq) +
∞∑
l=1

∑
d≥Ml

2−δl2l∥f∥Lp(lq)

≤ C

(
1 +

∫
Sn−1

|Ω(x)| logk+1(2 + |Ω(x)|)dσ(x)
)
∥f∥Lp(lq).

Inequality (4.3) can be seen from Lemma 3.2. To prove (4.2), define

T̄ b,k
d,l f(x) =

∫
1≤|x−y|<2

eip(2
d−1x,2d−1y)Ωl(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy,

and

T̄d,lf(x) =

∫
1≤|x−y|<2

eip(2
d−1x,2d−1y)Ωl(x− y)

|x− y|n
f(y)dy.

By dilation invariance, it is enough to prove that

(4.4) ∥T̄ b,k
d,l f∥Lp(lq) ≤ C2−δd∥Ωl∥∞∥f∥Lp(lq).

By an almost orthogonality argument, we may assume that f has support in a
cube Q with side length 1. Let ϕ ∈ C∞

0 (Rn), 0 ≤ ϕ ≤ 1, and let ϕ be identically
one on 10

√
nQ and vanish outside of 50

√
nQ, define b̄(y) = (b(y)−mQ̄(f))ϕ(y),

where mQ̄(f) = |Q̄|−1
∫
Q̄
f . When y ∈ Q and x in the support of Td,lf , we

have

(b(x)− b(y))k =

k∑
m=0

Cm
k b̄m(x)b̄k−m(y).

Write

T̄ b,k
d,l f(x) =

k∑
m=0

Cm
k b̄m(x)T̄d,l(b̄

k−mf)(x).

For each fixed integer m, 0 ≤ m ≤ k, observe that T̄d,l(b̄
k−mf) ⊂ 20nQ. We

first show that for 1 < q < 2 and q′ the dual index of q, then

(4.5) ∥T̄d,l∥q′ ≤ C2−δd∥Ωl∥∞∥f∥q.

In fact, from the proof in [19], it is easy to see that

∥T̄d,lf∥∞ ≤ C∥Ωl∥∞∥f∥1
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and

∥T̄d,lf∥2 ≤ C2−ϵd∥Ωl∥∞∥f∥2,
where ϵ is some positive number. By interpolation, we obtain (4.5).

For 1 < q < 2, 1/q′+1/p0 = 1/p, and 1/p1+1/p = 1/q, by Hölder inequality
and (4.5), we get

∥b̄mT̄d,l(b̄
k−mf)∥p ≤ C∥b̄m∥p0∥T̄d,l(b̄

k−mf)∥q′
≤ C2−δd∥Ωd∥∞∥b̄k−mf∥q
≤ C2−δd∥Ωd∥∞∥b̄k−m∥p1∥f∥p
≤ C2−δd∥Ωd∥∞∥f∥p.

Summing over m, we obtain

(4.6) ∥T̄ b,k
d,l f∥Lp(lp) ≤ C2−δd∥Ωl∥∞∥f∥Lp(lp).

Obviously, for ω ∈ Ap, we have

∥T̄ b,k
d,l f∥Lp(ω) ≤ C∥Ωl∥∞∥f∥Lp(ω).

From this, by extrepolation theorem of Ap (see [12]), we get for any 1 < q < ∞,

(4.7) ∥T̄ b,k
d,l f∥Lp(lq) ≤ C∥Ωl∥∞∥f∥Lp(lq).

Interpolating (4.6) and (4.7), we obtain (4.4).

Case 2. If Ω ∈ B0,k
∞ (Sn−1), we consider the terms Td, d ≥ 0. Without loss

of generality, we assume Ω ⊂ I is a ∞-block. Therefore, we only need to prove
that

∥Tdf∥Lp(lq) ≤ C[log(1/|I|+ 2)]k+1∥f∥Lp(lq).

Split

Tdf(x) =
∞∑
d=0

T b,k
d f(x) =

N∑
d=0

T b,k
d f(x) +

∞∑
d=N+1

T b,k
d f(x),

where

T b,k
d f(x) =

∫
2d−1≤|x−y|<2d

eip(x,y)
Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy,

and N will be decided later.
From the proof of Lemma 4.1, we know that

∥
N∑

d=0

T b,k
d f∥Lp(lq) ≤ CN [log(1/|I|+ 2)]k∥f∥Lp(lq).

Now to consider the case d > N , define

T̄ b,k
d f(x) =

∫
1≤|x−y|<2

eip(2
d−1x,2d−1y)Ω(x− y)

|x− y|n
[b(x)− b(y)]kf(y)dy,

and

T̄df(x) =

∫
1≤|x−y|<2

eip(2
d−1x,2d−1y)Ω(x− y)

|x− y|n
f(y)dy.
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We claim that

(4.8) ∥T̄ b,k
d f∥Lp(lq) ≤ C2−δd∥Ω∥q∥f∥Lp(lq).

By an almost orthogonality argument, we may assume that f has support in a
cube Q with side length 1. Let ϕ ∈ C∞

0 (Rn), 0 ≤ ϕ ≤ 1, and let ϕ be identically
one on 10

√
nQ and vanish outside of 50

√
nQ, define b̄(y) = (b(y)−mQ̄(f))ϕ(y),

where mQ̄(f) = |Q̄|−1
∫
Q̄
f . When y ∈ Q and x in the support of Tdf , we have

(b(x)− b(y))k =
k∑

m=0

Cm
k b̄m(x)b̄k−m(y).

Write

T̄ b,k
d f(x) =

k∑
m=0

Cm
k b̄m(x)T̄d(b̄

k−mf)(x).

For each fixed integer m, 0 ≤ m ≤ k, observe that T̄d,l(b̄
k−mf) ⊂ 20nQ. We

first notice that for 0 < γ < n

|T̄df(x)| ≤
∫
1≤|x−y|<2

|Ω(x− y)|
|x− y|n−γ

|b(x)− b(y)|kf(y)dy.

For any σ > 0 such that 1/(p + σ) = 1/p − γ/n and r > n/(n − γ), we then
have

(4.9) ∥T̄df∥p+σ ≤ C∥Ω∥r∥f∥p.
On the other hand, from the proof in [19], it is easy to see that for 1 < p < ∞

(4.10) ∥T̄df∥p ≤ C2−ϵd∥Ω∥r∥f∥p,
where ϵ is some positive number.

By interpolation, by (4.9) and (4.10), we have

(4.11) |T̄df∥p ≤ C2−θd∥Ω∥r∥f∥p−σ,

where θ is some positive number.
Let 1/p1 + 1/p0 = 1/p, and 1/(p1 − σ) = 1/p2 + 1/p, by Hölder inequality

and (4.11), we get

∥b̄mT̄d(b̄
k−mf)∥p ≤ C∥b̄m∥p0

∥T̄d(b̄
k−mf)∥p1

≤ C2−θd∥Ω∥r∥b̄k−mf∥p1−σ

≤ C2−θd∥Ω∥r∥b̄k−m∥p2∥f∥p
≤ C2−θd∥Ω∥r∥f∥p.

Summing over m, we obtain

(4.12) ∥T̄ b,k
d f∥Lp(lp) ≤ C2−θd∥Ω∥r∥f∥Lp(lp).

From [1] and by Theorem 3 of [22], we get for any 1 < q < ∞,

(4.13) ∥T̄ b,k
d f∥Lp(lq) ≤ C∥Ω∥r∥f∥Lp(lq).

Interpolating (4.12) and (4.13), we obtain (4.8).
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Hence, taking N = 2[log(1/|I|+ 2)]/θ, we get

∥
∞∑
d=0

T b,k
d f∥Lp(lq)

≤ CN [log(1/|I|+ 2)]k∥f∥Lp(lq) +
∞∑

d=N+1

2−θd|I|−1/r′∥f∥Lp(lq)

≤ C[log(1/|I|+ 2)]k+1∥f∥Lp(lq).

Thus, Theorem 1.2 is proved. □
Next we give some results in the case k = 0 of Theorem 1.2.

Theorem 4.1. Let Ω be homogeneous of degree zero and satisfy (1.1), s ∈ R
and 1 < p, q < ∞. If Ω ∈ B0,0

r (Sn−1) with r > 1 and the operators TP defined
by

TP f(x) = p.v.

∫
Rn

eiP (x,y)Ω(x− y)

|x− y|n
f(y)dy,

then
∥TP f∥Lp(lq) ≤ C∥f∥Lp(lq),

where Cp,q is a constant which depends only on p, q and degree of the real
polynomial P (x, y) but not its coefficients.

Adapting the proof of Theorem 1.2, Theorem 4.1 will be directly deduced
by (3.15) and Theorem 3.1.

We remark that in the scalar-valued case, Theorem 4.1 has been proved by
A. Al-Salman, H. Al-Qassem, L. C. Chen and Y. Pan [3] if p(x, y) = p(x − y)
and Wu [18] for general real polynomial P (x, y). It should be pointed out that
our proof is different from [3] and [18].

As a consequence of Theorems 1.2 and 4.1, we have the following result.

Corollary 4.1. Let Ω be homogeneous of degree zero and satisfy (1.1), s ∈ R
and 1 < p, q < ∞. If Ω ∈ L log+ L(Sn−1)

∪
B0,k

r (Sn−1) with r > 1, then the
operators TP defined by

TP f(x) = p.v.

∫
Rn

eiP (x−y)Ω(x− y)

|x− y|n
f(y)dy,

then

(4.14) ∥TP (f)∥Ḟ s
p,q

≤ C∥f∥Ḟ s
p,q

and

(4.15) ∥TP (f)∥F s
p,q

≤ C∥f∥F s
p,q

,

where Cp,q is a constant which depends only on p, q and degree of the real poly-

nomial P (x) but not its coefficients, and Ḟ s
p,q denotes the homogenous Triebel-

Lizorkin space and F s
p,q denotes inhomogeneous versions of Triebel-Lizorkin

space; see [21].
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We remark that in the case Ω ∈ L log+ L(Sn−1), the inequality (4.14) in
Corollary 4.1 has been proved by Chen et al. [7] by another way under the
condition ∇P (0) ̸= 0. Moreover, Corollary 4.1 is also new even if in the case
Ω ∈ B0,k

r (Sn−1) with r > 1.

Acknowledgement. The authors would like to thank the referee for some
valuable suggestions.
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