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VECTOR-VALUED INEQUALITIES FOR THE
COMMUTATORS OF SINGULAR INTEGRALS WITH
ROUGH KERNELS

LIN TANG AND HuoOXxioNG WU

ABSTRACT. In this paper, we establish the vector-valued inequalities for
the commutators of singular integrals with rough kernels. In particular,
our results can essentially improve some well-known results.

1. Introduction

Let R"(n > 2) be the n-dimensional Euclidean space and S"~! be the unit
sphere in R™ equipped with normalized Lebesgue measure do = do(x). Let Q
be a homogeneous function of degree zero on R™ and Q(z) € L*(S™~1) (s > 1),
and

(1.1) /Si Q(x) do(z) = 0.

The Calderén-Zygmund singular integral operator T is defined by

710) =po. [ T s~ iy,

where f € C§°(R").

In their fundamental work on singular integrals, Calderén and Zygmund
established the LP boundedness of T for 1 < p < oo under the condition that
Q¢ Llogt L(S" 1), i.e.,

/S 12(y)|1og(2 + [Q(y)]) do(y) < .

The condition that Q@ € Llog™ L(S™"!) turns out to be most desirable size
condition for the LP boundedness of T. This was made clear by Calderén and
Zygmund [5] where it was shown that 7 may fail to be bounded on L? for any p
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if the condition Q € Llogt L(S™~') is replaced by any condition Q € L?(S™~1)
with a ¢ satisfying ¢(t) = o(tlogt) as t — oc.

The block space B (S™~!) introduced by Lu et al. in [17], have some prop-
erties such as: LI(S"~1) C BYV(S"1) (=1 <w), BYv (S"~1) € B2 (S 1)
for v1 > vy and ¢ > 1, and all inclusions are proper. But the spaces
L(log L)*(S™~') and BY*~*(S"~!) with 0 < p do not contain each other.
Jiang and Lu [17] studies the L? boundedness of singular integral operator T
with kernels belonging to certain block spaces. Recently, H. Al-Qassem and
Y. Pan [2] established the L estimates for singular integrals T" provided that
Qe BY? with ¢ > 1.

On the other hand, the study of vector-valued inequalities for singular inte-
grals with rough kernels Q € L(S"~!) with ¢ > 1 attracted much attention;
see [13] and [22]. Naturally, it is an interesting problem whether we can es-
tablish the vector-valued inequalities for singular integrals with rough kernels
Q satisfying weaker conditions. In fact, in this paper, we will consider the
vector-valued inequalities for a class of higher order commutators followed by
Ty 1, is defined as follows

T @) = po. | Do) — o))
B | —yl?
where b € BMO(R"™), k € N and f € C*(R").

A celebrated result of Coifman and Meyer [8] states that if € C1(S"~1),
then for 1 < p < 00,Tp,; is bounded on LP(R™). When Q € Ug~1 L*(S™™1), by
a well-known result of Duoandikoetxea [9] and the Alvarez-Bagby-Kurtz-Pérez
boundedness criterion for the commutators of linear operator ([1], Theorem
2.13), we know that the operators Ty are bounded on L for 1 < p < oo.
Recently, Hu [15] proved that if Q € L(log L)¥*1(S"~1), then the operators
Ty.1, are bounded on LP for 1 < p < oco. In this paper, we will establish the
following results.

Theorem 1.1. Let Q be homogeneous of degree zero and satisfy (1.1), k€N and
b € BMO(R"), h(r) € L*(0,00). If Q € L(log L)**1(Sn=1)|J B%F(S"1),
then the operators T, 1 defined by

Tosif(2) = po- [ (e = o) 2= 0y b)) )y,

n |z —y["
are bounded on LP(19) with bound CP»QHbH%Mo(R") provided that 1 < p,q < co.

In addition, we also consider the following oscillatory singular integral com-
mutator T3 j defined by

Toaf@) =po. [ eren SE= D) - o) )

where p(z,y) is a real polynomial on R" x R® b € BMO(R"), k € N and
€ C&(R™).



VECTOR-VALUED INEQUALITIES 705

Theorem 1.2. Let Q be homogeneous of degree zero and satisfy (1.1), k € N
and b € BMO(R™). If Q € L(log L)**1(S"=1)|J B%*(S"~1), then the op-
erators Ty are bounded on LP(19) with bound Cp7q||b\\%Mo(Rn) provided that
1 <p,q < oo, where Cp 4 15 a constant which depends only on p, q and degree
of p(x,y) but not its coefficients.

We remark that Theorems 1.1 and 1.2 are also new even if in the case k = 0;
see [3], [7] and [6]. In particular, it is worth pointing out that the proof of
Theorem 1.1 is slightly different from [15], and we obtain Corollary 4.1 by
using Theorem 1.2, which improves the main results in [7].

The paper is organized as follows. In Section 2, we will give some preliminary
lemmas for Theorem 1.1. Next we will prove Theorem 1.1 in Section 1.3. The
proof of Theorem 1.2 will be given in Section 4.

Throughout this paper, C is a positive constant which is independent of
the main parameters and not necessary the same at each occurrence. For a
measure set F, denote by yg the characteristic function of E. For f defined
on R™, f denotes the Fourier transform of f.

We collect the notation to be used throughout this paper:

p/q 1/p

ey = | [ \ZIs@r) | o s = (e

JEZ

ity = ([ irepae)” Wt = ([ epowa)

2. Some lemmas for Theorem 1.1
In this section, we fix a > 2 and A, B > 0.

Lemma 2.1. Let ¢ € C(R"™) be a radial function such that suppp C {1/4 <
§l <4} and

> i) =1, [¢#0.

lez
Define the multiplier operator S; by

S1f(€) = éla™)f(©),
and S? by S? f(x) = Si(Sif)(z). For any positive integer k and b € BMO(R™),
denote by Sy p 1 (respectively Sl%b)k) the kth order commutator of S; (respectively
S?). Then for 1 < p,q < oo,

(i) ||(Z |Sl,b,kf|2)1/2||m(lq) < C(n,k,p, q)HbHIfBMO(]R")”fHL”(l")’
leZ

(i) ||(Z |512,b,kf|2)1/2||m(m) <C(n,k,p, q)HbHIEMO(Rn)||f||LP(lq);
lez
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(i) 1Y Sirfillzraey < Cokp, @)1 S aro@ns 1O AP o).
A I€EZ

The Lemma 2.1 follows from the weighted Littlewood-Paley theory, extre-
polation theorem and the main theorems in [1].

Lemma 2.2. Suppose {0;};cz is a sequence of Borel measures in R™. Write
oivof(x) =0j* f(x), and for k € N,

bk f () = b()ojpk-1f(2) — 0jpk—1(0f)(2).
Suppose for any 1 < p,q < oo such that
661 f 1 e qay + | g fll 2o ey < CB”bH%MO(R")||f||LP(l‘1)7
where i, () = sup i @, 15 = o), fy(w) = losl(=) and bix) =
b(—x). Then the following vector valued inequality

1O logwfil*) 2 lraey < k2, @) BIbI B aso@n I Q1515 2 ooy

JEZ JEZ
holds for 1 < p,q < oco.

Proof. We borrow some ideas from [10]. Since sup |0k fji| < py, k(sup Ifil),
Jj€

JEZ
q\ /4
(Z <S_UP|0j,b,kfjl|> >
ez NEZ
g\ 1/
< (Z (ﬂz,k@umfm)))
1€Z JEL »

7\ /4
p

lez \IEL

we then have

On the other hand, there exists a sequence {h;} € Lp,(lq/) such that

q\ 1/q
S losenfil
I€EZ \jer
p
< /Z|Ujbk'f]l|hl
||hHLp (lq)Sl leZ JEL
< s > [ S lfateli e

Lr’ (19 )<1 lEZ JEZ
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q\ /4
< C(nakvpaq)BHb”%MO(]R”) Z Z |l )
lEZ \JEL
P
where 7/ = p/(p — 1) and ¢’ = q/(q — 1).
Interpolating between above inequalities, we get
q/2 1/q
S loswnfal?
17 \ jEZ
q/2 1/q
< CBIblI o ||| D | D 1fal®
l€Z \JEL
Thus, Lemma 2.2 is proved. (]

Lemma 2.3 (See [14, 15, 16]). Let ms € C*(R™)(0 < & < o0) be a family of
multipliers such that supp ms C {|¢| < 6} and for some constants C and «,

[lms]loe < CAmMIn{6™%,8%}, ||Vmsllee < CA.
Let Ts be the multiplier operator defined by 7/};‘(5) = mg(€)f(£). For positive
integer k and b € BMO(R™), denote by T5s 1 the kth order commutator of Ts.

Then for any 0 < u < 1, there exists a positive constant C = C(n,k, 1) such
that

| Ts 0.k fll2 < CAQ™ [ Err0ny min{d =, 6% 3| £l2-

Lemma 2.4. Let {0;},cz be a sequence of finite Borel measure in R”. Suppose
forj ez,

(2.1) lojll < CA, ||Vl < CA
and there exists a positive constant 0 < a < 1 such that
16;(6)] < CAmin{|a’¢], |a/¢| 7>/ ™},
Suppose k € N and nonnegative integer h < k such that for any 1 < p,q < oo
s 1 f | ooy + 15 f o oy < CBIBIE aso ey | 1l Lo 1a) -
Then,
Tyif(@) =Y ojpnf(x)
JEL
s a bounded operator in LP(19) with bound

C(n,k,p,q)(A(ln a)k)ep’qufep"‘||b||11§Mo(R")v
where 0 < 0, 4 < 1 depending only on p and q.
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Proof. Choose a radial function ¢ € C§°(R™) such that 0 < ¢ < 1, supp ¢ C
{1/4 < |¢] < 4} and

D> ¢l =1, [¢l#o0.

ez
Define the multiplier operator S; by

Sif(€) = plale) f(©).

Set m;(€) = 65(§), mh(€) = m;(§)p(a?~'€), and by (2.1), we have

—

T}1(&) = mj(€)f(€).
Obviously, suppm!;(a=7¢) C {|¢| < 2a'} and
(2.2) imk(a™7¢)] < CAmin{a',a~"*/ ™}, [|[Vm}(a™")|| < CA.
Let fjl be the operator defined by
TH(€) = mj(a™7§)F (©).
The inequality (2.2) via Lemma 2.3 says that for 0 < p < 1,
HT;,b,kaQ < CMA(lna)ka_a”Wlna”bH]fBMO(Rn)||fH2-

Ifb € BMO(R”), then bt(.ﬁ) = b(tl‘) S BMO(R”) and ||bt||BMO(]R") =
|6l Baro(rny for any ¢ > 0. By dilation invariance, we have
(2.3) 1T} 1o f 2 < CrAtna) a bl o oy L f -
On the other hand, using Plancherel theorem, we have
(2.4) 1T} fll2 < CuA(lma)*a= /e ;.
We know from [15] that for any f,g € C§°(R"),

[ s@Ts@ o= [ @)Y S (SsTS o) de

" R IEZ jEL

With the aid of the formula
k
(b(x) = b())* =D Cilb(x) —b(2))"(b(z) = b(y)* ™, @, y, 2 € R™
i=0

Let
Unf(x) =Y (ST} Si—i )b f) ().
JEZ
It is easy to see that
k

(S TS ow ) (@) =D ChSi—jpk (TLS1—)b.if) ().

=0
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Furthermore,

(2.5) (T} S1—j)vif (x Zch Lo (Si—ipionf)(x).

From (2.3), (2.4) and (2.5), we get
IO HTIS; -0 172113

JEZ

< CA(IHG ~aulilfina Z ”bHBMO(]R" Z ||Sl—j,b,i—hf||§

JET
< C’A(lna o/ ina Z ||bHBMO R™) ||f||2
Hence,

26) (U leee < CAMna)y a2 b5 o £l o)
Now let us turn to prove the LP (lq)—boundedness of U;. Write

(T Si— J)bzf Zchamh(sl —j,byi— nf) ().

h=0
Applying Lemmas 2.1 and 2.2, for any 1 < p,q < oo, then we have

1
[ULfll e ey < Cz 18115370y 1O (TS50 1) 2l o 1o

i=0 jEZ
<OZ||b||BMo R") ZH 100 (S2 i n PP E Loy
(2.7) h0 jez
éCZZHbH’;;zz’zwz| wsinf ) o)
1=0 h=0 JEZ

< OBbllEarogn I flleqs)-

In particular, we have

(2.8) 10Ul 29y < OBl B arogn

Interpolating (2.6) and (2.8) for 1 < ¢ < oo, there exists a constant 0 < §, < 1
depending only on ¢ such that

(2.9)

[T fllL2qay < C(n, ks p, q)(A(ln a)k)e"Bl*eqafoqwul/lna”b”%MO(Rn)

fllz2 -

fllz2 -

Now, interpolating (2.7) and (2.9), for 1 < p < oo, there exists a constant
0 < 6,4, <1 depending only on p, ¢ such that

NULf | e o)
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< C(”a k,p, q)(A(ln a)k)@,,,qBl—9p,qa—9p,qau\l|/lnlebH%Mo(Rn) ||f||Lp(lq)-
Hence, we have
Ty f | ooy < Cln, kyp, @) (A(lna)*) s BY =1 ||b] 0 mny | 1l Lo o)

This completes the proof of Lemma 2.4. O

3. The proof of Theorem 1.1
To prove Theorem 1, we consider two cases on ).

Case 1. When Q € L(log L)¥*1(S"~1). As in [3], let Q be an integrable
function on S~ satisfying (1.1). Let E,,, = {y € S"71: 2™ < |Q(y)| < 2m*1}
for m € N and

AQ)={meN:o(E,)>2"*}.
For each m € A(Q), let

Q= 912 5, [, /E Qdo].

Then the following hold for all m in A(2):

/ Q,,do = 0;
Snfl

”QMHLl(S"*l) <2

HQm”LQ(Sn,l) < 22m+2.

In addition, we have the following decomposition
(3.1) Q=+ > 19wz 2m,
meA(Q)

where Qg € L?(S™"~1) and satisfies

/ Qo do = 0.
Sn—1

For each m € A(2) |J{0}, we define

m Qm -
T f() = po [ Az — o) 2mE = by — ) F)dy.
Rn |9E y|
From (3.1), we know that
(3.2) Thpif (@) =T f@) + Y Qe T f@).

meA(Q)
For m € A(Q), let {U;m)}jez be the sequence of measure defined by

m Qm
sio = [ (o) Wy
R 2m(i—1) <|y|<2mi ly|

b
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and

RO Qo(y)
[ tao! / )

Let |0§m)| be defined in the same way as or](»m), but with Q,, replaced by [Q,,|.
Al-Salman and Pan [3] proved the following result.

Lemma 3.1. Let h € L°°(0,00). Then there exist constant o > 0 and C such
that

™0 + (o™ Die)| < CmEmilgh =™, m e AW),

and

(@0 + 1ol )| < c@ilen =

On the other hand, it is easy to see that

(33) |(0™)e)] < em2milel, me A@),

B4 [VE™)O|+ VoDl < om2™, me A),
(35) |@™)ie)] < c2jg,

(3.6) V™)) + |V i) < o2,

and

(3.7) loi™|| < Cm, m e AQ), o] <cC.

We will also need the following key lemma.

Lemma 3.2. Let k € N and b € BMO(R"), Q be homogeneous of degree zero
and belong to L>(S™~1). Define the operator Mg, . by

Mo @) =supr [ o) b0~ 910y

IfQ e L>(S"1), then the mazimal operator Mgy, is bounded on LP(19) with

bound Cp 4 Ag k|10l Brro®n) for 1 < p,q < oo, where Aq . defined by

[ 120
A A

where |81 = 931 (sn) and |90 = 2l (5.

Agr = inf{A>0: I log®(2 +

) <1},

Proof. As in [15], without loss of generality, we may assume that Ag , = 1. It
is obvious that
12]11 Tog™ (2 + [ 0) < 1.

Let ¢x(t) = tlog" (2 +t) for t > 0. Then
£ (12D < 1.
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Thus,
Mogif@) <supr™ [ G )| )ldy
r>0 lz—y|<r
+Csupr™" S (|10 — y)])e" @O £ (y) | dy
r>0 |z—y|<r
<supr [ G861y
r>0 lz—y|<r
+C'supr " N PW)| f(y)|dy
r>0 |z—y|<r
+Csupr" W= f(y)|dy
r>0 |lz—y|<r

= I(f)(2) + TI(f)(x) + TLI(f) ().

For the first term, by the method of rotation of Calderén and Zygmund [5] and
the vector-valued inequality of Hardy-Littlewood maximal operator of Feffer-
man and Stein [11], we obtain

I zraay < Clow(IQD1 1L 1le -

It remains two terms. By the John-Nireberg inequality, we know that there
exist positive constants A and B such that for any cube @,

— b )
exp dxr < B,
|Q\ / (A||b||BMO(Rn -

where bg is the mean value of b on the cube Q. Let C; = (Amax{p,p’})~ L.
Straightforward computation shows that for real-valued b € BMO(R"™) with

bl Brro@®ny = C1,

L/ ep(b(m)—bQ)deB7 1 /e—Pl(b(:E)—bQ)dxSB7
QI Jg 1Ql Jo

and so eP?(*) ¢ Ap(the Muckenhoupt weight class) with the A, constant no
more that Cy = BP. By the weighted vector-valued inequality for the Hardy-
Littlewood maximal operator (see [4]), we have

L) e oy + IHII()l zegay < Cllflloe o)

Then
Mg fllzeaay < Cllflloe -

Lemma 3.2 is proved. |

Let us prove Theorem 1.1 continuously. Let u(m) |Jtm)\ u(m) | gm)|(fx)

and b(z) = b(—x), define the maximal operator by

(@ i ulw) = sup gl (@) and - (@1 () = sup 1)
JjE J
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By Lemma 3.2, for nonnegative integer h < k, we have
@™ ) wllzeqe + 1@ ) llzeqey < mAa, mlBlE o 1 Lo
< ka+1HbH}lLB‘MO(]R")”fHLp(lq)'

Let A,, = m,a,, = 2™ and B,,, = m*!, from (3.3)-(3.7) and applying Lemmas
2.4 and 3.1, we get for 1 < p,q < oo,

0
(3.8) U7 e oy < ClOIS aro @ 1 2r o),
and
3.9 T flisany < Co* b1 pro @ | Flrgn,  m € A(Q).

Finally, by (3.2), (3.8) and (3.9), we obtain for 1 < p,¢q < o0

0 m
| Thbsefll ooy < CUTY Fllvany + 3 I 1T Fll o ey
meA(Q)

< Clbllparomn (Ifllrasy + Y m* Q1 0 1 £l o e))
meA(Q)
< CHb”%MO(Rn)(l + 12 Log Ly+1(sn=1)1 fl 2o 19)-
Thus, Theorem 1.1 is established if Q € L(log L)**+1(Sm~1).
Case 2. When Q € B%F(S"71). Let us begin with the definition of g-block

functions on S"~!. We say that a measurable function b on S"~! is a g-block
if it satisfies the following:

(i) supp(b) C I, where and I is an interval on S"~1; i.e.,
I={a' €8 |2 —ux)| < p} for some z, € S"* p>0.
(i) [1bllg < 1717/, where 1/q +1/¢' = 1.
The function space B (5™ !)(v > —1), 1 < ¢ < oo, consists of all functions

Q € LY(S"1) of the form @ = >3 ¢,b, where ¢, € C, b, is a g-block

supported in an interval I, on S"~! for each y, and

(3.10) MS’“({CM}) = Z leul(1+ (log IIul_l)v—H) < 0.
pn=1

For a g¢-block function b on S™~! supported in an interval I with ¢ > 1 and
]l < |I|~"/¢" we define the function b on S™~! by

(3.11) b(x) = b(z) — / b(u)do(u).
Sn—l
Then one can easily see that b enjoys the following properties:
(3.12) / b(uw)do(u) = 0;
S'n.fl

(3.13) Ibllg < 21171/
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(3.14) 18] < 2.

Let b be a blocklike function defined as in (3.11). Define the measures {05 }iez
by -
b(u
fioy, = [ T b
R 29 =1<|u|<29

Jul"

These measures will be useful only in the case |I| > e~2 where I is the support
of b. On the other hand, for the case |I| < e~ we need to define the following
measures.

b(u)
dXg.; = h d
an f b,j /wj1<u|<wj f(u) |u|n (|U|) u,

where w = 20087171 || < ¢=2 and [-] denotes the greatest integer function.

Lemma 3.3 (See [3]). Let b be a function defined as in (3.11). If |I| < 2,
then there are 0 < o < 1 and C' > 0 such that

[30.4(6)] < Clog(11] ) (w ey~ =T

By assumption, ) can be written as 2 = Zzo:1 cuby, where ¢, € C, b, is a
oo-block supported in an interval 1), on Sm=1and MP*({c,}) satisfies (3.10).
For each n =1,2,..., let b, be the blocklike function corresponding to b,. By
the vanishing condition on {2 we have

Q= i CMBM
p=1

and hence -
I Thbkfllzean <> leul| Thw b fll o),
where "
s @) = po. [ (e = o) =D bta) = b))

Let {0,};ez be the sequence of measure defined by

b (y)
do; = h H d
[ tio, Lw<quwﬂwywy

Then by (3.11)-(3.14) we have
llosll + Nl lll < &

V(o)) + [Vilaihie)| < o2
(@) + (o) < c@leh
[CNGIEea
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for |I,] > e~2. Also, by (3.11)-(3.14) and Lemma 3.3, we have
NS+ IS < C A
vONTO)|+ Vx| < C Al
|10 + 1) < CAuwile o/ 1oms;
19| < cauwilel
where A, = [log(|1,|~H)]*** and |I,,| < e~2.

Let o = |[Af], o (z) = |Nf|(—z) and b(z) = b(—z), define the maximal
operator by

o bl (@) =supol,  [fl(z) and o, 5t (@) =sup 5;5 W f1(@).
JEZL jez 7
If nonnegative integer h < k, by Lemma 3.2, we get for any 1 < p,q < oo,
loppnflLeqey + 167, 5, f e ey
< Cllog(1/[1ul + 2)1Aay, 16l B 0@ | F 1l Leao)
< Cllog(1/1,] + 2)](llog(1/ 1] + 212011 + DBl B aso @) 1f 1|2 14
< Cllog(1/|Lu] + 211l pro gy | 1l Lo ra) -
From these, by Lemmas 2.2, 2.3 and 2.4, we obtain
I Th.pak f | Lo ey < Cllog(1/| L] + 21" £l Lo 1o

Hence, Theorem 1.1 is proved.
Next we give a result in the case k = 0 of Theorem 1.1.

Theorem 3.1. Let Q be homogeneous of degree zero and satisfy (1.1), s € R
and 1 < p,q < 0o, h(r) € L>=(0,00). If Q € BYO(S"~1) with r > 1, then the
operators Ty, defined by

Qx —
1@ = [ o =) P )
are bounded on LP(19) with bound Cp 4.

Adapting the proof of Theorem 1.1, Theorem 3.1 is directly deduced by the
following fact that (see [6]): Let Q € L'(S"~!) and 1 < p,q < oo. Then
(3.15)

1/q 1/q
> Mo (f5)] < CpgllQlzrsn—ny || | D 1£1 ,
jez JEZ
Lr(R™) LP(R™)
where C) 4 is independent of f; for all j € Z and Mg defined by
1
Mg f(z) = sup — Qz —y) f(y)ldy.

n
r>0 T lz—y|<r
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4. The proof of Theorem 1.2
To prove Theorem 1.2, we will need the following lemmas.

Lemma 4.1. Let k € N and Q € L(log L)*(S"~1)|J B%*~1(S"~1) be homo-
geneous of degree zero. Suppose that b € BMO(R"™) and 1 < p,q < co. Then
there exists a positive constant C such that

| MaprfllLe@ay < OHb”%JMO(]R”)Hf”LP(l‘I)a
where Mq 1 f(x) = sup,sqr " f|a:—y|<7" 1z — y)[b(z) — b(y)]* f(y)| dy.
Proof. 1f Q € L(log L)*(S™~1), write
Q(z) = Ax)XE ()
with
Eo={zecs" ' |Qx)] <1},
E={xest .27 <) <2}, IeN.
By Lemma 3.2, we have
1My bkll Lo sy < Chay 101 B aro ny | F1l Lo o) -
Hence,
[Ma,pkllLr ey < CZ A, IBlIBno @) 1 | 2r 0y < ClBIBMO @) I1F |27 199
1>0
where we use the following fact that (see [15])
> A, O+ 19 Ltog )k (s7-1)-
1>0

If Q € BYF=1(S"1), without loss of generality, we assume Q C [ is a
oo-block. By Lemma 3.2, we have

| Mokl e ey < Cllog(1/|] + 2)]* [ fl| Lo o).
This completes the proof. ([

Lemma 4.2. Let k € N and Q2 € L(log L)k(S"~1) | B%*~1(S"~1) be homoge-
neous of degree zero. Suppose that b € BMO(R"), k € N and 1 < p,q < co. If
the operator

Ty f(x) =pu. | k(z,y)[blz) —by)]* f(y)dy

R’!L
is bounded on LP(17) with bound C’B||b||’éMO(Rn), and k(z,y) satisfies
Qlx—y
b)) < 20,
|z =yl

then the truncated operator

TS = [ kb b W
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is bounded on LP(17) with bound C(B + 1)Hb||]k3MO(Rn).

Proof. Without loss of generality, we may assume that |[b|gmom®n) = 1. For
each fixed h € R", we split f = f1 + fo + f3, where

[1@) = fW)Xjy—ni<172®),  fa(y) = FW)x1/a<y—n|<5/a(y).
It is easy to verify that if |x — h| < 1/4, then
Ty fu(@) = T fa() = [ kay)bta) - o) Aoy
|[z—y|<1
Thus

r/q
o

/ hl<1/4 Z |Tb1,kf1j($)|q dr < Bp||b||BMO(]Rn)Hfl”zl)/p(lq).
z—h|<

j=1

If |t — h| <1/4 and 1/2 < |y — h| < 5/4, then 1/4 < |x — y| < 3/2. So we see
that for |z — h| < 1/4,

T} fale)] < /

Lemma 4.1 now tells us that

[z —y )||
1/4<|z—y|<3/2 ‘m_y|n

[b(x)—b(y)]* f2(y)|dy < C M2 fo().

r/q

/| h<1/4 Z |Tb1,kf2j(-r)|q dr < CHbHBMO(]R")HfQHZZp(lq)-
z—h|<

j=1

Obviously, we have Ty, f3(z) = 0 for |z — h| < 1/4. Combining the above
inequalities leads to

- r/q
/ STty | da
|z—h|<1/4 j=1
p/q
<C(l+ BP)||bHBMO R / Z |fj(x dz.
—hl<2 \ ;53

Integrating the last inequality with respect to h gives

1Ty flloasy < CB + Dbl Eyvogn 1 2r o)

This completes the proof of Lemma 4.2. O

Proof of Theorem 1.2. Without loss of generality, we may assume that ||b|[zmo
= 1. We shall argue induction on the degree of the polynomial in = and y. If the
polynomial p(z,y) = Pi(z) + P2(y), Theorem 1.2 is obvious by Theorem 1.1.
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Let w and v be two positive integers and suppose the polynomial has degree u
in x and v in y. Write

pley)= > aapz®y’.
|| <w,|B|<v
By dilation invariance, we may assume that Z|a\:u,\ Bl=v |aqs| = 1. Decompose

Tt = [ e ) - o)y

o e 2= ) b)) )y

i Jari<la—y <2t =yl
= Tof(x) + Y _ Taf (x).
d=1

We first consider Ty. We claim that
(4.1) 1Tofllzrqay < Cllfllzeqa)-

We assume that (4.1) holds for all polynomials which are sums of monomials
of degree less than u in = times monomials of any degree in y, together with
monomials which are of degree u in x times monomials which are of degree less
than v in y. Rewrite

pley)= > aas(@®y® —y*F) + po(x,y),

lor|=u,|B|=v

where po(z,y) satisfies the inductive assumption. It follows that

) = eipo(m,y) Q(J?—y) ) — k
Tof@ = [ e b bl o)y

) . Q(x —
[ (et — e ) )y
lz—y|<1 |(E - y‘
— T} f(x) + T2 f(2).
Using inductive assumption based on Theorem 1.1 and Lemma 4.2, we have

|78 £l oy < CIF Loy

Set f(y) = FW)X{y|<2y- It is easy to see T2f(x) = TE f(x) for |z| < 1. Thus,
when |z| <1,
wr@ <o [ D iy

|lz—y|<1 |17 - y|n71

sy [ e b - )M
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0
<C Z 24 Myay, 1. f ().

d=—o00

By Lemma 4.1, we get

p/q 1/p

0 0
/|<1 Z‘Tgfi(m)‘q dx <C Z 2| My, 1 fll Lo i)

j=1 d=—o00

0
<C Z 2901 fll Lo oy

d=—o0

°\J
ly|<2 j

from which the same argument as that in p. 189 of [20] shows that the inequality

1/p 1/p

p/q - p/q
/ ( T@fj(w)lq) | <c / ( Ifj(y)lq) dy
le—h|<1 \ ;=1 ly—h|<2 \ 51

p/q 1/p
o0

| £ (y)]? dy ,
1

IN

holds for all h € R™ and C' > 0 is independent of h. Integrating the last
inequality with respect to h and using Hoélder’s inequality, we finally obtain

IT5 fllLe oy < Cllflloia)-
Now we return to consider Ty, d > 1. we consider two cases on ().
Case 1. When Q € L(log L)k1(S™~1). Split

Tuf(x) =Y Ty) (@),
=0

where
TOF f(z) = / eip(z’y)M[b(I) —by)k
d,l " y)I" f(y)dy,
2d-1<|p—y|<2d |z —yl
Q(z) = Qz)XE (x)
with
Ey={zxes" ' Q) <1},
E={re S 27 <|Q(2)] <2}, leN

Set |||, = [ r(gn-1y for 1 <7 < 00 in the rest of this section. If we can
prove that for some § > 0,
(42) 176 Fllzeasy < C27 el flloqe),
and

(4.3) IT3F fll ooy < Chau il Fll Lo o),



720 LIN TANG AND HUOXIONG WU

then, for a suitably chosen integer M > 6!, we have

bk
1Y T3 Flle oy

1=0
bk

< Z T3 fllzeqa)

d=11=0

(oo} o0 o0

bk bk bk

= Z T30 fllzeqay + Z Z 1Ty fllLe ey + Z Z T30 fllLe e

d=1 =1 1<d<M] =1 d> Ml
< Clloollfllran + CY Dkl flean + > D> 272 fllLoa

=1 I=1 d>M!
<c (1 + /S 190 log"H (24 Q<z>|>da<x>) 1 llzoo.
Inequality (4.3) can be seen from Lemma 3.2. To prove (4.2), define
— ip(24—14 9d—1 Q(x —
T = [ e D) gk
1<|z—y|<2 |(E - y‘
and

— . d— d— Q Xr —
Tous(e) = | @ e B ) g
1<]e—y|<2 |z —yl

By dilation invariance, it is enough to prove that
=b,k -
(4.4) ITg7 flle ey < C27 U Qulloo I Fll o o)

By an almost orthogonality argument, we may assume that f has support in a
cube @ with side length 1. Let ¢ € C§°(R™), 0 < ¢ < 1, and let ¢ be identically
one on 10y/nQ and vanish outside of 50,/nQ, define b(y) = (b(y) —mg(f))d(y),
where mg(f) = |Q|™* fQ f. When y € @ and x in the support of Ty, f, we
have

k
(b(x) = b(y))* = D CLB™ (@)b—m (y)-

m=0

Write
k
Tyl f(x) =Y Cpb™ (@)L (05 f) ().
m=0

For each fixed integer m, 0 < m < k, observe that Td)l(Bk_mf) C 20nQ). We
first show that for 1 < ¢ < 2 and ¢’ the dual index of ¢, then
(4.5) 1 Taille < C27°|ulloo | £ lg-

In fact, from the proof in [19], it is easy to see that

|1 Ta1flloo < CliQlooll £l
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and
ITafll2 < C271Qu ool fl2,
where € is some positive number. By interpolation, we obtain (4.5).
Forl<q<2,1/¢+1/py=1/p,and 1/p;+1/p = 1/q, by Holder inequality
and (4.5), we get

[0 T (0™ F)llp < CUL™ [|po | Tt (0™ f)l o
< C279|Qg | oo 1™ f1|q
< C27| Qa0 10F ™ (1, | £ 1l
< C27%|Qq oo || £ -

Summing over m, we obtain
7b,k -
(4.6) T3 flle ey < C27 ool f 1l o o) -

Obviously, for w € A,, we have

=b,k
1737 fllzew) < ClUllooll fll Lo (w)-
From this, by extrepolation theorem of A, (see [12]), we get for any 1 < ¢ < oo,

(4.7) 1727 Fllzoqoy < Clillocl 2.
Interpolating (4.6) and (4.7), we obtain (4.4).

Case 2. If Q € BY¥(S"~1), we consider the terms Ty, d > 0. Without loss
of generality, we assume €2 C I is a co-block. Therefore, we only need to prove
that

| Taf|loaay < Cllog(L/[I] + 2)1" | fll o o).
Split

') N e’}
Taf(x) =Y Ty ) =Y Ty f) + > Tyt f(a),
d

d=0 =0 d=N+1

, Oz —
T = [ e T ) — b )

and N will be decided later.
From the proof of Lemma 4.1, we know that

N
1> T3 Fllze ey < CNLog(1/ ]+ 2)1¥) £ ]| ooy

d=0
Now to consider the case d > N, define
- in(2d—1p 9d—1,0 (T — Y
T = [ e e A ) sy,
1<|lz—y|<2 |CE - y‘

and

Tuf(z) = / eip(2‘“1w,2d*1y)Mf(wdy_
1<|z—y|<2 |l’ - y|n
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We claim that
(4.8) IT5" fll o ey < C270 Q|| £l o 10y -

By an almost orthogonality argument, we may assume that f has support in a
cube @ with side length 1. Let ¢ € C5°(R™), 0 < ¢ < 1, and let ¢ be identically
one on 10y/nQ and vanish outside of 50,/nQ, define b(y) = (b(y) —mg(f))d(y),
where mq(f) = Q! fQ f. When y € Q and x in the support of T, f, we have

Write

0
For each fixed integer m, 0 < m < k, observe that T, ;(b*~™f) C 20nQ. We
first notice that for 0 < v < n

Tl s [ Bl

1<|z—y|<2 |l’ - y|n7'y

b(x) — b(y)|" f(y)dy.

For any ¢ > 0 such that 1/(p+0) = 1/p —v/n and r > n/(n — ), we then
have

(4.9) 1 Tafllp+o < ClQU Fllp-
On the other hand, from the proof in [19], it is easy to see that for 1 < p < 0o
(4.10) I Tafllp < C27 | flps

where € is some positive number.
By interpolation, by (4.9) and (4.10), we have

(4.11) Tafllp < C27°IQ [ fllp—o

where 6 is some positive number.
Let 1/p1 +1/po = 1/p, and 1/(p1 — o) = 1/pa + 1/p, by Holder inequality
and (4.11), we get
[ Ta® =" F)llp - < ClO™ 1o 1 Ta (0" )|y
< C270|Q| 057 fllpy —o
< C2701Q 105 a1 f
< C27%Ql )| fl-

Summing over m, we obtain

(4.12) 13" fllory < C27 U If 2o o).
From [1] and by Theorem 3 of [22], we get for any 1 < ¢ < oo,
(4.13) T2 Flloay < CULUAAF N Loy

Interpolating (4.12) and (4.13), we obtain (4.8).
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Hence, taking N = 2[log(1/|I]| + 2)]/6, we get

o0
bk
1Y T FllLe ey
d=0

< CNlog(1/[I| + 2)1* [ flzoqey + >, 277" || fll ooy
d=N+1
< Cllog(1/ |+ 2)1* | fll o aa)-
Thus, Theorem 1.2 is proved. O

Next we give some results in the case k = 0 of Theorem 1.2.

Theorem 4.1. Let Q be homogeneous of degree zero and satisfy (1.1), s € R
and 1 < p,q < oco. If Q € BY°(S™"~1) with r > 1 and the operators Tp defined
by
- Qx —
Trs(a) = po. [ ePen DD pig)ay,

" |z -yl

then
T fllLraey < CllfllLe ey,

where Cp 4 s a constant which depends only on p,q and degree of the real
polynomial P(x,y) but not its coefficients.

Adapting the proof of Theorem 1.2, Theorem 4.1 will be directly deduced
by (3.15) and Theorem 3.1.

We remark that in the scalar-valued case, Theorem 4.1 has been proved by
A. Al-Salman, H. Al-Qassem, L. C. Chen and Y. Pan [3] if p(z,y) = p(z — y)
and Wu [18] for general real polynomial P(z,y). It should be pointed out that
our proof is different from [3] and [18].

As a consequence of Theorems 1.2 and 4.1, we have the following result.

Corollary 4.1. Let Q be homogeneous of degree zero and satisfy (1.1), s € R
and 1 < p,q < oo. If Q € Llog™ L(S"~ 1)U BY*(S"~1) with r > 1, then the
operators Tp defined by

Tp f(x) =p-v-/ eiP(z*y)Mf(y)dy,

" |z — y|™
then
(4.14) ITe (NI, < Clifllg,
and
(4.15) ITe(Nlleg, < Cllflleg,,

where Cyp, 4 15 a constant which depends only on p,q and degree of the real poly-
nomial P(x) but not its coefficients, and sz,q denotes the homogenous Triebel-
Lizorkin space and Fj , denotes inhomogeneous versions of Triebel-Lizorkin
space; see [21].
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We remark that in the case Q € Llog® L(S™!), the inequality (4.14) in
Corollary 4.1 has been proved by Chen et al. [7] by another way under the
condition VP(0) # 0. Moreover, Corollary 4.1 is also new even if in the case
Q € BYk(S"~1) with r > 1.

Acknowledgement. The authors would like to thank the referee for some
valuable suggestions.
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