• 제목/요약/키워드: Rotordynamic

검색결과 170건 처리시간 0.02초

MW급 대용량 유도전동기 축계의 모드실험 기반 회전체 동역학 해석모델 수립 및 위험속도 예측 (Rotordynamic Model Development and Critical Speed Estimation Through Modal Testing for the Rotor-Bearing System of a MW Class Large-Capacity Induction Motor)

  • 박지수;최재학;김동준;심규호
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.279-289
    • /
    • 2020
  • In this paper, a method is proposed for establishing an approximate prediction model of rotor-dynamics through modal testing. In particular, the proposed method is applicable to systems that cannot be established according to conventional methods owing to the absence of information regarding the dimensions and material of the rotor-bearing system. The proposed method is demonstrated by employing a motor dynamometer driven by a 1 MW class induction motor without dimension and material information. The proposed method comprises a total of seven steps, wherein an initial model is established by incorporating approximate dimensions and material information, and the model is improved on the basis of the natural frequency characteristics of the system. During model improvement, the modification factor is introduced for adjusting the elastic modulus and shear modulus of the system. Analysis of critical speed and imbalance response indicates that the separation margin is 67% and the maximum vibration amplitude is less than the amplitude limit of 0.032 mm under the API 611 standard, which means that the motor dynamometer can stably operate at a rated speed of 1800 rpm. Hence, the obtained results validate the feasibility of the proposed method. Furthermore, for broad usage, it is necessary to accordingly apply and validate the proposed method for various rotor-bearing systems.

35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가 (Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System)

  • 박병준;정세용;한상철;한상진;이대화;한영희
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.

플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석 (Stability Analysis of Floating Ring Bearing Supported Turbocharger)

  • 이동현;김영철;김병옥
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

모튼이펙트 해석을 위한 동역학-구조-유체-열전달 시간과도응답 연성해석 시차적분법에서 시상수 효과 분석 (Analysis of Integration Factor Effect in Dynamic-Structure-Fluid-Heat Coupled Time Transient Staggered Integration Scheme for Morton Effect Analysis)

  • 서준호;정승화
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.77-86
    • /
    • 2019
  • The present study focuses on the effect of staggered integration factor (SIF) on Morton effect simulation results. The Morton effect is a synchronous rotordynamic instability problem caused by the temperature differential across the journal in fluid film bearings. Convection and conduction of heat in the thin film displaces the hot spot, which is the hottest circumferential position in the thin film, from -20 to 40 degrees ahead of the high spot, where the minimum film clearance is experienced. The temperature differential across the journal causes a bending moment and the corresponding thermal bow in the rotating frame acts like a distributed synchronous excitation in the fixed frame. This thermal bow may cause increased vibrations and continued growth of the synchronous orbit into a limit cycle. The SIF is developed assuming that the response of the rotor-lubricant-bearing dynamic system is much quicker than that of the bearing-journal thermal system, and it is defined as the ratio between the simulation time of the thermal system and the rotor-spinning period. The use of the SIF is unavoidable for efficient computing. The value of the SIF is chosen empirically by the software users as a value between 100 and 400. However, the effect of the SIF on Morton effect simulation results has not been investigated. This research produces simulation results with different values of SIF.

볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성 (Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports)

  • 서정화;김태호
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험 (Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing)

  • 이동현;김병옥;정준하;임형수
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.

대형 LCD 패널 제조용 복합재 롤러의 회전체 동역학 해석 (Rotordynamic Analyses of a Composite Roller for Large LCD Panel Manufacturing)

  • 박효근;최진호;권진회;이영환;양승운;김동현
    • Composites Research
    • /
    • 제19권6호
    • /
    • pp.8-15
    • /
    • 2006
  • 본 연구에서는 대형 LCD 패널 제조용 복합재 롤러에 대한 3차원 회전체 동역학 해석을 수행하였다. 전산해석은 로터시스템의 회전에 의한 자이로스코픽 영향을 고려한 일반적인 유한요소법에 근거하고 있다. 본 연구에서는 유럽의 범용 상용 유한요소해석 프로그램인 SAMCEF를 활용하였으며 이는 전문적인 로터해석 모듈을 포함하고 있다. 전산해석 기법의 검증을 위해 베어링 지지된 2중 회전축 로터 모델에 대한 해석 및 비교결과를 제시하였다. 설계된 복합재 롤러 모델에 대한 상세 유한요소 모델을 구축하였으며, 중력 효과를 고려한 전산해석을 통하여 실제 운용환경에서의 진동특성을 고찰하였다. 이의 결과로 다른 회전조건에 대한 로터 안정성 선도 및 불평형 응답에 대한 결과들을 제시하였다.

탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석 (Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation)

  • 서동찬;김경희;이도훈;이보라;서준호
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

민감도 벡터를 이용한 스팀 터빈의 Morton Effect 발생 예측 (Predicting the Morton Effect in a Steam Turbine with Sensitivity Vector)

  • 이동현;김병옥;전병찬;서준호;강신훈;김세룡
    • Tribology and Lubricants
    • /
    • 제40권2호
    • /
    • pp.39-46
    • /
    • 2024
  • The Morton effect (ME) is an instability phenomenon occurring in rotating machineries supported by fluid film bearings and is induced by the thermal deformation of the overhung mass, which is a part of the rotating shaft. Herein, we describe the ME during the high-speed balancing test of a 20 MW class steam turbine. Additionally, to predict the rotating speed at which the ME occurs, we apply the sensitivity vector theory for the steam turbine. During the operation of the steam turbine, we observe a continuous increase in vibration and hysteresis near the rated speed, which is typical of the ME. Increasing the temperature of the lubricating oil supplied to the bearings from 40 to 60℃ suppresses the occurrence of the ME. The rotordynamic analysis for the steam turbine suggests the existence of a mode in which the overhung mass undergoes significant deformation near the rated speed, and we presume that such a mode will increase the occurrence of the ME. The predicted rotating speed of ME occurrence, obtained through the sensitivity vector method, correlates with the test results. Moreover, increasing the temperature of the supplied lubricating oil mitigates the occurrence of ME by reducing the sensitivity between the temperature deviation vector and unbalance mass vector.

가스 포일 베어링 범프 구조의 1 자유도 가진/가압 실험을 통한 주파수 의존 동특성 규명 (Identification of Frequency-Dependent Dynamic Characteristics of a Bump Structure for Gas-Foil Bearings via 1-DOF Shaker Tests Under Air Pressurization)

  • 심규호;박지수;이상훈
    • 대한기계학회논문집A
    • /
    • 제39권10호
    • /
    • pp.1029-1037
    • /
    • 2015
  • 최근 회전 시스템의 고속화 경향에 따라 회전체 동역학적 안정성의 중요성이 부각되었다. 고속회전 시스템에 적용되는 가스베어링의 동특성을 규명하는 것은 회전체의 거동을 예측하는데 상당히 중요하다. 본 연구에서는 대표적인 가스베어링인 가스포일베어링의 범프 구조에 대하여 가진실험을 수행하고 가진 주파수에 따른 동특성을 측정하였다. 실험 결과, 범프 구조의 강성은 주파수에 따라 증가하였고 감쇠는 감소하였다. 또한, 가압 조건에서의 동특성은 범프 구조의 동특성 보다 낮은 값을 가졌다. 본 실험을 통해 범프 구조의 주파수 의존 동특성의 경향을 파악하였으며 가스포일베어링의 동특성에 윤활막이 미치는 영향에 대해 확인하였다. 또한 두 가지 동특성 계산 방법을 제시하여 실험결과를 통해 효과 적인 동특성 계산 방법에 대해 비교 고찰하고 범프 구조와 윤활막의 동특성을 비교 하였다.