• Title/Summary/Keyword: Rotordynamic

Search Result 170, Processing Time 0.028 seconds

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

Labyrinth Seal Design Considering Leakage Flow Rate and Rotordynamic Performance (누설유량과 회전체동역학적 성능을 고려한 래버린스 씰 설계)

  • Minju Moon;Jeongin Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.61-71
    • /
    • 2023
  • This study proposes a procedure for designing a labyrinth seal that meets both leakage flow rate and rotordynamic performance criteria (effective damping, amplification factor, separation margin, logarithmic decrement, and vibration amplitude). The seal is modeled using a one control volume (1CV) bulk flow approach to predict the leakage flow rate and rotordynamic coefficients. The rotating shaft is modeled with the finite element (FE) method and is assumed to be supported by two linearized bearings. Geometry, material and operating conditions of the rotating shaft, and the supporting characteristics of the bearings were fixed. A single labyrinth seal is placed at the center of the rotor, and the linearized dynamic coefficients predicted by the seal numerical model are inserted as linear springs and dampers at the seal position. Seal designs that satisfy both leakage and rotordynamic performance are searched by modifying five seal design parameters using the multi-grid method. The five design parameters include pre-swirl ratio, number of teeth, tooth pitch, tooth height and tooth tip width. In total, 12500 seal models are examined and the optimal seal design is selected. Finally, normalization was performed to select the optimal labyrinth seal designs that satisfy the system performance requirements.

Rotordynamic Analysis of a Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation (고속 운전용 건식진공펌프 로터-베어링 시스템의 회전체동역학 해석)

  • Lee, An-Sung;Lee, Dong-Hwan;Kim, Byung-Ok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.523-530
    • /
    • 2006
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element hearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as veil as the rotor itself. Each resultant hearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

  • PDF

A Study on the Turbopump Rotordynamic Characteristics due to Bearing Housing Structural Flexibility (베어링 하우징의 구조 유연성에 따른 터보펌프 회전체동역학 특성 연구)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • A rotordynamic analysis is performed for a turbopump of 7 ton class liquid rocket engine considering bearing housing structural flexibility. Stiffness and damping characteristics of ball bearings and pump noncontact seals are reflected in a rotordynamic model. A dynamic model of bearing housing with lumped mass and stiffness is also applied to the rotordynamic analysis. Rotor critical speed and onset speed of instability are predicted from synchronous rotor mass unbalance response and complex eigenvalue analyses. The bearing housing structural flexibility effect on rotordynamic characteristics is investigated for both of bearing loaded and unloaded conditions respectively. From the numerical analysis, it is found that the effect of the housing structural flexibility significantly reduces the rotor critical speed and onset speed of instability.

A Rotordynamic Analysis of Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation (고속 운전용 건식진공펌프 로터-베어링 시스템의 전체동역학 해석)

  • Kim, Byung-Ok;Lee, An-Sung;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.47-54
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modem semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part II : A Driven High-Speed Compressor Pinion-Impeller Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part II : 피동 고속 압축기 피니언-임펠러 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1042-1049
    • /
    • 1999
  • In the Part I has been reported a rotordynamic analysis of the driving motor-bull gear rotor-bearing system of a turbo-chiller. In this study, Part II, a rotordynamic analysis is performed with the turbo-chiller compressor pinion-impeller rotor system supported on two fluid film bearings. The pinion-impeller rotor system is driven to a rated speed of 14,600 rpm through a speed-increasing pinion-bull gear. It is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support bearings, the generalized forces of the gear action as well as the rotor itself. The two support bearings, partial and 3-axial groove bearings, are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the compressor pinion-impeller rotor-bearing system is carried out to evaluate its stability, whirl natural frequencies and mode shapes, and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regardless of operating conditions, i.e., loads and operating speeds.

  • PDF

Rotordynamic Analysis Using a Direction Frequency Response Function (방향성 주파수 응답 함수를 이용한 회전체 동역학 해석)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Hyungsoo Lim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.221-227
    • /
    • 2023
  • A rotordynamic system consists of components that undergo rotational motion. These components include shafts, impellers, thrust collars, and components that support rotation, such as bearings and seals. The motion of this type of rotating system can be modeled as two-dimensional motion and, accordingly, the equation of motion for the rotordynamic system can be represented using complex coordinates. The directional frequency response function (dFRF) can be derived from this complex coordinate system and used as an effective analytical tool for rotating machinery. However, the dFRF is not widely used in the field because most previous studies and commercial software are based on real coordinate systems. The objective of the current study is to introduce the dFRF and show that it can be an effective tool in rotordynamic analysis. In this study, the normal frequency response function (nFRF) and dFRF are compared under rotordynamic analysis for isotropic and unisotropic rotors. Results show that in the nFRF, the magnitude of the response is the same for both positive and negative frequencies, and the response is similar under all modes. Consequently, the severity of the mode cannot be identified. However, in the dFRF, the forward and backward modes are clearly distinguishable in the frequency domain of the isotropic rotor, and the severity of the mode can be identified for the unisotropic rotor.

Rotordynamic Analysis Using a Direction Frequency Response Function (방향성 주파수 응답 함수를 이용한 회전체 동역학 해석)

  • Donghyun, Lee;Byungchan, Jeon ;Byungock, Kim;Hyungsoo, Lim
    • Journal of Domestic Journal Test
    • /
    • v.11 no.2
    • /
    • pp.221-227
    • /
    • 2023
  • − A rotordynamic system consists of components that undergo rotational motion. These components include shafts, impellers, thrust collars, and components that support rotation, such as bearings and seals. The motion of this type of rotating system can be modeled as two-dimensional motion and, accordingly, the equa- tion of motion for the rotordynamic system can be represented using complex coordinates. The directional fre- quency response function (dFRF) can be derived from this complex coordinate system and used as an effective analytical tool for rotating machinery. However, the dFRF is not widely used in the field because most pre- vious studies and commercial software are based on real coordinate systems. The objective of the current study is to introduce the dFRF and show that it can be an effective tool in rotordynamic analysis. In this study, the normal frequency response function (nFRF) and dFRF are compared under rotordynamic analysis for isotropic and unisotropic rotors. Results show that in the nFRF, the magnitude of the response is the same for both pos- itive and negative frequencies, and the response is similar under all modes. Consequently, the severity of the mode cannot be identified. However, in the dFRF, the forward and backward modes are clearly distinguishable in the frequency domain of the isotropic rotor, and the severity of the mode can be identified for the uniso- tropic rotor.

Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Multi-Land (이종 표면을 갖는 실의 특성해석)

  • Ha, Tae Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.447-452
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that leakage is increasing and rotordynamic stability is decreasing as increasing the length of smooth land part in the honeycomb/smooth land seal.

  • PDF

Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Honeycomb/Smooth Land (Honeycomb/Smooth 표면을 갖는 비접촉 환상 실의 특성해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.40-46
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that the leakage increases and rotordynamic stability decreases as increasing the length of smooth land part in the honeycomb/smooth land seal.