• Title/Summary/Keyword: Rotor-Stator

Search Result 1,061, Processing Time 0.026 seconds

Drive Characteristics Using Resonant Frequency of a Ring Type Ultrasonic Motor

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Cherl-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.173-178
    • /
    • 2003
  • The rotational force of ultrasonic motors is able to get from the frictional force of elliptical vibration by contact between rotor and stator. Generally, ultrasonic motors are suitable for driving at resonant frequencies of about 20∼80[KHz]. The driving characteristics of ring type ultrasonic motors are the object of this study. A two-phase driving signal is delivered to the tested ultrasonic motor, which has a $90^0$ phase difference respectively with both sine and cosine voltage waveforms. The driving frequency is almost equal to the mechanical resonant frequency for the proper operation, and the driving signal is supplied by the two-phase parallel resonant inverter. The validity of the proposed driving method is verified by experimental results with stable operation.

Sensorless Speed Control of PMSM using an Adaptive Sliding Mode Observer (적응 슬라이딩 모드 관측기를 이용한 영구자석 동기전동기의 센서리스 속도제어)

  • Han, Yun-Seok;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • This paper presents a new speed and position sensorless control method of permanent magnet synchronous motors based on the sliding mode observer. Since the parameter of the dynamic equation such as machine inertia or viscosity friction coefficient are not well known and these values can be easily changed generally during normal operation, there are many restrictions in the actual implementation. The proposed adaptive sliding mode observer applies adaptive scheme so that observer may overcome the problem caused by using the dynamic equation. Furthermore, using the Lyapunov Function, the adaptive sliding mode observer can estimate rotor speed as well as stator resistance. The feasibility of the Proposed observer is verified cia the experiments.

Design and Characteristics Analysis of a Novel Single-phase Hybrid SRM for Blender Application

  • Jeong, Kwang-Il;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1996-2003
    • /
    • 2018
  • In this paper, the design and characteristic analysis of a novel single-phase hybrid switched reluctance motor (HSRM) for the purpose of replacing the universal motor in commercial blenders are presented. The proposed motor is easy to manufacture due to its simple yet robust structure with minimized power switches and no torque dead-zone. Moreover, the proposed HSRM is able to deliver a high starting torque as a requirement for blending hard food or even ice. The stator has permanent magnets (PMs) mounted on its inner surface and the rotor has a wide pole arc and salient poles that contribute to its high starting torque profile and the elimination of the torque dead-zone. Finite element method (FEM) is used to analyze the characteristic of the proposed motor. Finally, the prototype is manufactured and its performance is verified through experiments.

A Time-Saving Method for Analyzing Permanent Magnet Motors

  • Won, Sung-Hong;Han, Ki-Soo;Kim, Tae-Heoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.17-22
    • /
    • 2010
  • This paper presents a unique method for simulating permanent magnet motors without time-consuming numerical methods used in the conventional magnetic circuit method. The conventional method gives us average values like torque and power over specified periods of time, but it is usually very difficult and time-consuming to obtain instantaneous characteristics like cogging torques and torque ripples. The convolution operations method we present, however, considers relative angle variations of stator magnetic circuits and rotor magnetic circuits. As a result, it makes uses of instantaneous values possible. The authors compare the new method with the coventional method and verify that calculating cogging torque values and back-emf values is possible with the proposed new convolution method.

Measuring the Average Torque according to Exciting Region of Single Phase SRM (단상 SRM의 여자구간에 따른 평균 토크 측정)

  • Kim Yong-Heon;Lee Eun-Woong;Lee Jong-Han;Lee Hyeon-Woo;Kim Jun-ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.989-991
    • /
    • 2004
  • There are many elements that affect the average torque of the single phase SRM. It is related with the stator and rotor pole arcs, the dwell angle of the exciting current, the turn on/off angle, etc., Most of all, the turn on/off angle is affect the design procedure of the driving and control circuit. So, in this study, it is intend to analyze the effect that the variations of the turn on/off angle affects the average torque. and then this analyses will be used to design the control driver of the single phase SRM.

  • PDF

Stator Flux Vector Control of Synchronous Reluctance Motor (동기형 리럭턴스 전동기의 자속 추정형 센서리스 제어)

  • AHN JOONSEON;KIM SOL;LIM JINJAE;GO SUNGCHUL;LEE JU
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.794-796
    • /
    • 2004
  • In the evaluation of performance for the algorithm of sensorless speed control, the ability of speed control in low speed range and starting is important points. First of all, stability of low speed control is highly required in the application which needs high performance in speed control. For this requirement, this paper represents simple method to estimate the rotor position by comparing reference linkage flux with it's estimation. In the estimation of linkage flux, this paper uses voltage-current model for increasing the performance of speed control in low speed range.

  • PDF

Characteristic Analysis and Design of a Single Phase Switched Reluctance Motor for High Speed Application

  • Kim, Youn-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.114-121
    • /
    • 2004
  • Switched reluctance motors have received much attention as a driving means for various industrial applications because they have simple construction, low cost and high efficiency. Nevertheless, the requirements of drive converters make it difficult to lower the overall system cost as compared with the DC motor application. Single phase switched reluctance motors (SPSRMs) provide a solution to the high cost problem since the number of switching power devices can be reduced and consequently the trials for application are increased. However, research involving SPSRMs, especially in the area of design work, is insufficient. This paper introduces a novel design methodology of single phase SRM. The design work for SPSRM comprises the determination of many variables such as stator and rotor pole arc as well as on, off and so on. Managing all variable combinations leads to lengthy computation time and a fault in the design process. For that reason, a reliable technique and brief procedure term are required in SPSRM design.

Circuit Parameters and Characteristic Analysis of Condenser Run Single Phase Induction Motor by Combine Equivalent Circuit with Numerical Method (등가회로법과 수치해석의 결합에 의한 콘덴서 구동형 단상 유도전동기의 회로정수 산정 및 특성해석)

  • Kang, Gyu-Hong;Ha, Kyung-Ho;Hong, Jung-Pyo;Kim, Gyu-Tak;Jeong, Seung-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.720-728
    • /
    • 2000
  • This paper describes the calculation of the equivalent circuit parameters and the characteristic analysis of a capacitor-run type single-phase induction motor by means of the finite element method in coupled with the conventional equivalent circuit model. The circuit parameters of the stator are calculated form the lumped parameter and the slot leakage reactance of the rotor with the closed slot can be obtained by the use of slot pitch boundary condition. From the analysis result this combined equivalent circuit and finite element method which is used slot pitch boundary condition is compared with the experimental results, the validity of the method is proved.

  • PDF

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

A Shape Optimization of Universal Motor using FEM and Evolution Strategy

  • Shin, Pan-Seok
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.156-161
    • /
    • 2002
  • This paper proposes an optimized universal motor for improving its performance using the finite element method (FEM) with the (1+1) Evolution Strategy (ES) algorithm. To do this, various design parameters are modified, such as air gap length, shape of motor slot, pole shoe, pole width, and rotor shaft diameter. Two parameters (arc length of stator pole and thickness of pole shoe) are chosen and optimized using the program, and the optimized model is built and tested with a performance measuring system. The measured values of the model are compared with those of the initial and the optimized model to prove the algorithm. As a result, the final model improves its performance compared with those of the initial model.