• Title/Summary/Keyword: Rotor-Stator

Search Result 1,061, Processing Time 0.029 seconds

New On-line Tuning Scheme of Inductances for Induction Motors in Field Weakening Region (약계자 영역에서 유동전동기 인덕턴스의 새로운 온라인 동조방법)

  • 김하용;신명호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1999
  • New estimation and tuning schemes of inductance variations for rotor flux oriented (RFO) control of induction motor in field weakening region are presented. Stator transient inductance and stator self inductance are estimated. From estimated stator self inductance. magnetizing inductance is estimated and from estimated stator transient inductance, rotor leakage inductance is estimated. Simulation and experimental results prove the effectiveness of the proposed s scheme in constant torque and field weakening region.

  • PDF

Analysis on Parameter Detuning of Induction Motor Drives in Constant Torque Region (일정토크영역에서 유도전동기 고정자자속기준제어의 파라미터 비동조 영향 분석)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.81-86
    • /
    • 2012
  • It is well known that the stator-flux-oriented induction motor drives are not dependent on parameter detuning in constant torque region except low speed range. This paper presents parameter detuning effects of stator-flux-oriented induction motor drives in constant torque region. The detuning effects of stator resistance, rotor resistance and rotor leakage inductance are analyzed.

Sensitivity Analysis of Geometrical Parameters of a Switched Reluctance Motor with Modified Pole Shapes

  • Balaji, M.;Ramkumar, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.136-142
    • /
    • 2014
  • A major problem in Switched Reluctance Motor (SRM) is torque ripple, which causes undesirable acoustic noise and vibration. This work focuses on reducing the undesirable torque ripple in SRM by modifying stator and rotor geometry. This paper presents a comparative study on torque ripple minimization in SRM with modified pole shapes such as stator pole taper, stator pole face with non-uniform air gap and pole shoe attached to rotor pole. Further this paper presents a detailed sensitivity analysis of the effect of different geometrical parameters that alter the pole face shapes on the performance of SRM. The analysis is performed using finite-element method considering average torque and torque ripple as performance parameters. Based on the analysis, a design combining stator pole taper with non-uniform air gap is proposed to improve the torque characteristics of SRM. The dynamic characteristics of the proposed design are simulated and the results show satisfactory reduction in torque ripple.

Driving Characteristics of the Cross Type Ultrasonic Rotary Motor Dependent on Shape of the Stator (스테이터의 형태에 따른 Cross형 초음파 회전모터의 구동특성)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.433-437
    • /
    • 2005
  • This paper studied Rotary type ultrasonic motor which has cross type stator. The stator consists of hollowed cross type metal which has four piezoelectric ceramics on the ends of cross bars. When two harmonic voltages which have 90$^{\circ}$ phase difference given to ceramics, the elliptical motion was generated in the inside tips. Inside tips are contact with rotor and these elliptical motions are rotate the rotor The finite element analysis was used to optimize the dimension and displacement of the stator. And the analyzed results were compared with the experimental results of the motor. As results, the speed and the torque of motor was increased by increasing width of the cross bar. And the speed and torque o( motor was not influenced to length of cross bar. The speed and torque was linearly increased by increasing voltage. The maximum torque was generated when the motor fabricated length of cross bar and width of ceramics in the ratio of 1:2.

Induction Motor Parameter Identification using Step Response (계단 응답을 이용환 유도 전동기 파라미터 식별)

  • Jeon, Bum-Ho;Roh, Chi-Won;Ryu, Joon-Hyung;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.723-725
    • /
    • 2000
  • This paper presents a parameter identification method to estimate the stator resistance. stator inductance, rotor resistance and rotor inductance of the induction motor. A step voltage is applied across the stator terminals while the machine is in the standstill condition, and the resulting stator voltage and current response are measured. Observer/Kalman Filter Identification(OKID) algorithm is used to estimate induction motor parameters. Simulation results are presented to verify the identified model.

  • PDF

Speed-torque Characteristics of the Squirrel Cage Induction Motor with High Temperature Superconducting Rotor Bars by the Variation of the Rotor resistance (회전자 저항변화에 따른 고온초전도 단락봉을 사용한 농형유도전동기의 속도-토크 특성)

  • Sim Jung-wook;Lee Kwang-youn;Cha Guee-soo;Lee Ji-kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.33-37
    • /
    • 2004
  • This paper presents the construction and test results of an HTS induction motor. End rings and short bars were made of HTS tapes, To increase the efficiency and starting torque, HTS tapes can be used as the rotor bars. Because large current is induced in the rotor circuit, HTS tapes quench and high starting torque can be obtained. As the speed of rotor builds up. HTS tapes which are used as short bars become superconducting state again. After the HTS tapes recover from quench, resistance of the rotor circuit is nearly zero. In that case, power loss in rotor circuit is eliminated. Stator of the conventional induction motor was used as the stator of the HTS motor. Rated capacity of the conventional motor was 0.75 kW. Performances of the HTS induction motor were compared with those of the conventional motor with same volume and specification. Test result showed that the speeds of the HTS induction motor were the same with synchronous speed up to 2.6 Nm and 1.788 rpm at 9.7 Nm. It guarantees the high efficiency of the HTS motor. Starting torque of the HTS motor was more than twice of the conventional motor.

D-q Equivalent Circuit-based Protection Algorithm for a Doubly-fed Induction Generator in the Time Domain

  • Kang, Yong-Cheol;Kang, Hae-Gweon;Lee, Ji-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.371-378
    • /
    • 2010
  • Most modern wind turbines employ a doubly-fed induction generator (DFIG) system due to its many advantages, such as variable speed operation, relatively high efficiency, and small converter size. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. We propose a protection algorithm for a DFIG based on a d-q equivalent circuit in the time domain. In the DFIG, the voltages and currents of the rotor side and the stator side are available. The proposed algorithm estimates the instantaneous induced voltages of magnetizing inductance using those voltages and currents from both the stator and the rotor sides. If the difference between the two estimated induced voltages exceeds the threshold, the proposed algorithm detects an internal fault. The performance of the proposed algorithm is verified under various operating and fault conditions using a PSCAD/EMTDC simulator.

Protection for DFIG using the d-q Equivalent Circuit (d-q 등가회로를 이용한 이중여자 유도발전기 보호)

  • Kang, Yong-Cheol;Lee, Ji-Hoon;Kang, Hae-Gweon;Jang, Sung-Il;Kim, Yong-Gyun;Park, Goon-Cherl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2173-2178
    • /
    • 2008
  • A doubly-fed induction generator(DFIG) system has been widely used in the modem wind turbines due to variable-speed operation, high efficiency and small converter size. It is well known that an inter-turn fault of a generator is very difficult to be detected. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. This paper proposes a protection algorithm for a DFIG using the d-q equivalent circuit in the time domain. In the case of a DFIG, the voltages and currents of the rotor side as well as the voltages and currents of the stator are available. The proposed algorithm estimates the instantaneous(i.e., converted into the stationary frame) induced voltages from the rotor and the stator sides. If the difference between the two estimated induced voltages exceeds the threshold, the proposed algorithm detects the inter-turn fault. The algorithm can detect a inter-turn fault of a winding. The performance of the proposed algorithm is validated using a PSCAD/EMTDC simulator under inter-turn fault conditions and normal operating conditions such as an external fault and the change of the wind speed.

Design and Analysis of a Segmental Rotor Type 12/8 Switched Reluctance Motor

  • Zhang, Hongtao;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.866-873
    • /
    • 2014
  • In this paper, a novel 12/8 segmental rotor type switched reluctance motor (SRM) is proposed for cooling fan applications. Unlike conventional structures, the rotor of the proposed structure is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. Moreover, in this structure, short flux paths are taken and no flux reversion exists in the stator. While the auxiliary poles are not wound by the windings, which only provide the flux return path. When compared with the conventional SRM, the proposed structure increases the electrical utilization of the machine and decreases the core losses, which may lead to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get the static and dynamic characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.

Effects of Rotational Speed on the Performance in a Transonic Axial Compressor with a Dihedral Stator (회전속도가 상반각 정익을 적용한 천음속 축류 압축기 성능에 미치는 영향)

  • Hwang, Dongha;Choi, Minsuk;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents a numerical investigation of the effect of the rotation speed on the performance in a transonic axial compressor with the dihedral stator. Four stator geometries with different stacking line variables were tested in the flow simulations over the whole operating range. It was found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occurred at low mass flow rate with the 100 % design speed. The hub dihedral stator could suppress the shroud loss region and consequently improve the stall margin. In case of the 70 % design speed condition as the mass flow rate decreased, it was seen that the high loss region was placed at the midspan of the rotor passage. The dihedral stator slightly affected the local diffusion factor, but the performance of the compressor was not changed.