• 제목/요약/키워드: Rotor-Stator

검색결과 1,061건 처리시간 0.026초

A Study on 4-Axis Machining for Mono Pump Rotor (모노펌프 로터 4-축 가공에 관한 연구)

  • Cho, Hyun-Deog;Park, Jong-Bae;Wang, Si-Kuan;Heo, Yu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제18권3호
    • /
    • pp.94-102
    • /
    • 2019
  • Mono pump rotors are widely used in wastewater treatment plants, medicine, cosmetics, paint, paper, and chemical manufacturing, dairy production, public works, agriculture, and so on. A mono pump comprises two main parts: the rotor and stator. Typically, the rotor is machined using an expensive whirling machine. In this study, we developed an algorithm for 4-axis machining of the rotor on machining center (MCT). NC-code was obtained by applying the algorithm and finally the rotor of the mono pump was machined on a 4-axis MCT. Results of four sample experimental works showed close agreement with design geometries.

Phase Resonance in Centrifugal Fluid Machinery -A Comparison between Pump Mode and Turbine Mode Operations and a Discussion of Mechanisms of Flow Rate Fluctuation through a Stator-

  • Yonezawa, Koichi;Toyahara, Shingo;Motoki, Shingo;Tanaka, Hiroshi;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권2호
    • /
    • pp.42-53
    • /
    • 2014
  • Phase resonance in Francis type hydraulic turbine is studied. The phase resonance is a phenomenon that the pressure fluctuation in the penstock of hydraulic turbine installation can become very large when the pressure waves from each guide vane caused by the interaction with the runner vane reach the penstock with the same phase. Experimental and numerical studies have been carried out using a centrifugal fan. In the present study, comparisons between the pump mode and the turbine mode operations are made. The experimental and numerical results show that the rotational direction of the rotor does not affect characteristics of the pressure fluctuation but the propagation direction of the rotorstator interaction mode plays an important role. Flow rate fluctuations through the stator are examined numerically. It has been found that the blade passing flow rate fluctuation component can be evaluated by the difference of the fluctuating pressure at the inlet and the outlet of the stator. The amplitude of the blade passage component of the pressure fluctuation is greater at the stator inlet than the one at the stator outlet. The rotor-stator interaction mode component is almost identical at the inlet and the outlet of the stator. It was demonstrated that the pressure fluctuation in the volute and connecting pipe normalized by the flow rate fluctuation becomes the same for pump and turbine mode operations, and depends on the rotational direction on the interaction mode.

The Design of Rotor Bars of Single-Phase Line-Start Permanent Magnet Motor for Improving Starting Characteristics (단상 유도동기전동기의 기동 특성 개선을 위한 회전자 바 형상 설계)

  • Lee Chul-kyu;Kwon Soon-hyo;Yang Byung-yull;Kwon Byung-il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제54권8호
    • /
    • pp.370-376
    • /
    • 2005
  • The single-phase induction motor is simple and durable, but the efficiency is low. Therefore, electric motors like HLDC and LSPM(line-start permanent magnet motor) that use the permanent magnet have been studied. The most advantages of single-phase LSPM is having the same stator as the stator of the single-phase induction motor and permanent magnets are just inserted in the squirrel cage rotor of the single-phase induction motor. But the characteristics of single-phase LSPM synchronous motor has very complex characteristics until the synchronization and if the design is not suitable, the single-phase LSPM synchronous motor cannot be synchronized. We designed a single-phase LSPM using the same stator and winding as the conventional single-phase induction motor, but newly designed the permanent magnets considering air gap magnetic flux density. The transient characteristics of the single-phase LSPM is not good because of a magnetic breaking torque, however, it can be improved by redesigning the rotor bars. We are proposed the design method of rotor bar for the single-phase LSPM to start softly and to make synchronization easily.

A Study on Gerotor Design with Optimum Tip Clearance for Low Speed High Torque Gerotor Hydraulic Motor (저속 고토오크 제로터 유압모터의 최적 이 끝 틈새를 갖는 제로터 설계 연구)

  • Seo, J.S.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • 제10권4호
    • /
    • pp.119-126
    • /
    • 2006
  • Gerotor hydraulic motor is widely used in hydraulic systems due to its low speed, high torque output and compactness in rotational direct driving of a heavy weight. Gerotor is a Planar mechanism consisted of a pair of rotor and circular teeth of stator assembly which forms a closed space, so called a chamber. The motion of rotor relative to the circular tooth is produced by the pressure difference of hydraulic operating fluid between the adjacent chamber. As all active contact points of rotor and circular teeth are subjected to very high sliding friction, a reduction in the performance of the gerotor hydraulic motor can not be avoided. Therefore, the core design parameters of gerotor profile used in hydraulic motors is to minimize a friction force by high contact stresses. The analytical design method of gerotor profile, based on envelope of a family of curves, is proposed. In this study, the influence of the tip clearances on three critical contact points between rotor and circular teeth of stator assembly has been explored by experimental data in this paper. At the same time a improvement method to reduce the friction force is proposed and the tip clearances on three critical points for getting an optimum gerotor profile are also analyzed.

  • PDF

Optimization of a Flywheel PMSM with an External Rotor and a Slotless Stator

  • Holm S.R;Polinder H.;Ferreira J.A.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.215-223
    • /
    • 2005
  • An electrical machine for a high-speed flywheel for energy storage in large hybrid electric vehicles is described. Design choices for the machine are motivated: it is a radial-flux external-rotor permanent-magnet synchronous machine without slots in the stator iron and with a shielding cylinder. An analytical model of the machine is briefly introduced whereafter optimization of the machine is discussed. Three optimization criteria were chosen: (1) torque; (2) total stator losses and (3) induced eddy current loss on the rotor. The influence of the following optimization variables on these criteria is investigated: (1) permanent-magnet array; (2) winding distribution and (3) machine geometry. The paper shows that an analytical model of the machine is very useful in optimization.

Turbomolecular Pump 내 Rotor-Stator의 형상 변화에 따른 유동의 수치적 해석

  • Kim, In-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.98-98
    • /
    • 2012
  • 최고진공도 10-10 mbar, 배기속도 2500 L/s를 구현할 대용량 복합 분자펌프(TMP) 설계를 위한 3차원 유동해석을 실시하였다. 진공도가 10-5 mbar 이상이 되는 고진공도에서는 Knudsen 수가 102~107에 이르러 분자간 충돌을 거의 무시할 수 있게 되며, 이때의 유체해석 방법으로서는 통상 희박기체 해석법으로 많이 쓰이는 Direct Simulation Monte Carlo (DSMC) 방법이나 Continuum fluid에 대한 Navier-Stokes 해석보다, 충돌이 없는 분자의 자유운동을 모사하는 Monte Carlo 방법이 더 적합할 수 있다. 본 연구에서는 다단계 rotor와 stator로 구성되는 복합분자 내 유동장에 Monte Carlo 해석법을 적용하여 유동해석을 실시하였다. 해석 방법의 타당성을 확인하기 위해 동일한 형상에 대해 Navier-Stokes 해석과 DSMC 해석을 병행하였다. 각각의 수치적 해석에서 공통적으로, TMP의 성능에 지배적인 영향을 미치는 설계변수는 rotor-stator의 날개각임이 확인되었고, 이 설계변수들의 최적값을 다양한 3차원 유동해석을 통해 도출하였다. 해석결과는 펌프설계에 적용되어 펌프 성능시험결과를 통해 확증된다.

  • PDF

An Automated Die Design System for Blanking and Piercing of Stator and Rotor Parts (스테이터 및 로터의 블랭킹 및 피어싱에 관한 자동화된 금형설게 시스템)

  • Park, J.C.;Kim, B.M.;Kim, C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제14권5호
    • /
    • pp.22-33
    • /
    • 1997
  • This paper describes a research work of developing a computer-aided design of blanking and piercing for stator and rotor parts. Based on knowledge-based rules, the die design system, STRTDES2, is designed by considering several factors, such as complexities of blank geometry and punch profile, and availability of press equipment and standard parts. Therefore this system can carry out a die design for each process which is obtained from the result of an automated process planning system, STRTDES1 and generate part drawing and the assembly drawing of die set in graphic forms. Knowledges for die layout are extracted from plasticity theories, relevant references and empirical know-hows of experts in blanking industries.

  • PDF

Influence of a weak superposed centripetal flow in a rotor-stator system for several pre-swirl ratios

  • Nour, Fadi Abdel;Rinaldi, Andrea;Debuchy, Roger;Bois, Gerard
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권2호
    • /
    • pp.49-59
    • /
    • 2012
  • The present study is devoted to the influence of a superposed radial inflow in a rotor-stator cavity with a peripheral opening. The flow regime is turbulent, the two boundary layers being separated by a core region. An original theoretical solution is obtained for the core region, explaining the reason why a weak radial inflow has no major influence near the periphery of the cavity but strongly affects the flow behavior near the axis. The validity of the theory is tested with the help of a new set of experimental data including the radial and tangential mean velocity components, as well as three components of the Reynolds stress tensor measured by hot-wire anemometry. The theoretical results are also in good agreement with numerical results obtained with the Fluent code and experimental data from the literature.

Study on Design and Characteristic Analysiy of 6/8 SRM (6/8극 SRM의 설계 및 특성해석에 관한 연구)

  • Sohn Ick-Jin;Oh Seok-Gyu;Hao Chen;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2002
  • A three-phase 6/8 structure Switched Reluctance Motor drive, the construction of the stator and the rotor. in the motor, the scheme of the rotor position detector and the main circuit of the power converter are described. The range of the stator pole arc factor and the rotor pole arc factor of the motor are analyzed in the linear region. The optimum range of the stator pole arc factor and the optimum range of the turn-off angle of the main switches in the power converter are given with the 2-D finite element electro-magnetic field calculation of the motor and the nonlinear simulation. Test jesuits of the developed prototype are discussed.

  • PDF

Characteristics Analysis of a Novel Segmental Rotor Axial Field Switched Reluctance Motor with Single Teeth Winding

  • Wang, Bo;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.852-858
    • /
    • 2014
  • A novel 12/10 axial field switched reluctance motor (AF-SRM) is proposed for cooling fan applications in this paper. Unlike from conventional structures, the proposed motor uses the axial field instead of the radio field, the rotor is constructed from a series of discrete segments, and the stator poles are constructed from two types of stator poles: exciting and auxiliary poles. This concept improves the torque capability of a previous design by reducing the copper volume, which leads to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.