• Title/Summary/Keyword: Rotor structure

Search Result 500, Processing Time 0.025 seconds

Mechanical Loads Analysis and Control of a MW Wind Turbine (MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어)

  • Nam, Yoon-Su;Choi, Han-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

Speed Sensorless Vector Control System with the Magnetizing Inductance Compensation structure (자화 인덕턴스 보상구조를 가지는 속도센서없는 벡터 제어시스템)

  • Kwon, Young-Gil;Choi, Jung-Soo;Kim, Sang-Uk;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2136-2138
    • /
    • 1998
  • In this study, the speed sensorless vector control system with the magnetizing inductance compensation structure is presented. The estimations of the rotor speed and the magnetizing inductance using the terminal voltages and currents are performed with the reduced order Gopinath flux observer. The rotor speed is estimated by the torque producing current which is derived from the estimated value of the rotor flux and the measured stator currents. In order to compensate the variation of the magnetizing inductance under the saturated conditions, we also established the compensation scheme which is made with the instantaneous reactive power. The validity of the proposed method is verified by simulation results.

  • PDF

Calculation of Electromagnetic Excitation Forces in Double Skewed Motors

  • Bao, Xiaohua;Di, Chong;Zhou, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.812-821
    • /
    • 2018
  • An electromagnetic excitation force is caused by the air-gap flux density, which greatly influences the noise and vibration of the motor. In many real projects, skewed slot technology is widely used to reduce the harmonic components of the air-gap flux density to reduce the noise and vibration of the motor. However, a skewed slot has several side effects such as a transverse current and axial drifting. Thus, a double skewed slot rotor is selected with the aim of eliminating these side effects. This paper presents the exact structure of the double skewed slot rotor and the mechanism whereby the electromagnetic excitation force can be reduced. A multi-slice method is adopted to model the special structure. Finite element simulation is used to verify the theory.

Evaluation of Turbulence Models for A Compressor Rotor (축류압축기 회전차유동에 대한 난류모델의 성능평가)

  • Lee, Yong-Kab;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.179-186
    • /
    • 1999
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67), and to evaluate the performances of k-$\epsilon$ and Baldwin-Lomax turbulence models. A finite volume method is used for spatial discretization. And, the equations are solved implicitly in time with the use of approximate factorization. Upwind difference scheme is used for inviscid terms, but viscous terms are centrally differenced. The flux-difference-splitting of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. And, the results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, we conclude that k-$\epsilon$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost same.

  • PDF

Effect of Incidence Angle on the Turbulence Structure in the Wake of a Turbine Rotor Blade (입사각이 터빈 동익 후류의 난류구조에 미치는 영향)

  • Chang, Sung-Il;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.55-62
    • /
    • 2003
  • This paper describes the effect of the incidence angle on the turbulence structure in the wake of a turbine rotor blade at the low inlet free-stream turbulence level. For three incidence angles of -5, 0 and 5 degrees, mid-span energy spectrum as well as mid-span profiles of mean velocity magnitude and turbulence intensity are reported at three downstream locations in the wake. Vortex shedding frequencies are obtained from the energy spectrum. The result shows that as the incidence angle changes from-5 to 5 degrees, the boundary layer on the suction surface tends to be thickened, which results in widening of the wake. Strouhal numbers based on the shedding frequencies have a nearly constant value of 0.3, independent of tested incidence angles.

  • PDF

An Optimal Design of the Rotor of BLDC Motors for Noise Reduction (BLDC 모터의 소음 저감을 위한 로터부 구조 최적설계)

  • Kim, Ji-Hoon;Ko, Kang-Ho;Kim, Min-Soo;Heo, Seoung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.972-975
    • /
    • 2004
  • In order to reduce the noise of BLDC motor, a systematic optimization procedure for rotor structure is presented. The noise index is defined as the sum of volume velocity of FE-model that are calculated at the dominant frequencies during dehydration process, which is based on the principle of radiation simple volume source. Then, the five design variables are selected to represent the shape and layout or rotor structure. This discrete design optimization problem for minimizing the noise index is solved by 3-level orthogonal array based effect analysis. Finally, the response surface method (RSM) combined optimization approach is employed for more refining the approximate optimum.

  • PDF

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

Rotor Stability and Whirl Flutter Analysis of Smart UAV (스마트무인기 로터 안정성 및 훨플러터 해석)

  • Lee, Myeonk-Kyu;Shen, Jinwei
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • This paper describes the modeling data and final analysis results of rotor resonance, rotor aeroelastic stability and whirl flutter stability for Smart UAV (SUAV). The effects of wing beamwise, chordwise and torsional stiffness on the whirl flutter stability were investigated considering the possibility of design change of SUAV wing structure. The parametric study showed that wing torsional and beamwise stiffness changes have much stronger influence on the wing mode damping than chordwise stiffness. It was analytically demonstrated that the final designed rotor system is aeroelastically stable and free from resonance, and that rotor/pylon/wing system of SUAV TR-S4 has enough rotor stability and whirl flutter stability margin.

  • PDF

Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon;Kim Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.

A Study on Design and Manufacture of Slotless Outer Rotor BLDC Motor for a Vehicle Blower (자동차 송풍장치용 Slotless Outer Rotor BLDC 모터 설계 및 제작에 관한 연구)

  • Hyon-Jang Lee;Hee-Seok Jeong;Sun-Ho Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.827-834
    • /
    • 2023
  • In this paper, a slotless outer rotor BLDC motor for a vehicle blower was designed and manufactured to improve the disadvantages of general motors. The proposed motor solves the noise caused by mechanical friction of DC motor during rotation by removing the brush, Also, slotless air-gap windings are used to improve cogging torque by BLDC motor slots. Then, the motor has a structure in which a magnet is attached to the external rotor and rotates simultaneously with the internal rotor, there is no change in magnetic flux. Therefore, it has high efficiency by fundamentally reducing iron loss.