• Title/Summary/Keyword: Rotor speed

Search Result 1,973, Processing Time 0.036 seconds

Simultaneous Estimation of Rotor Speed and Rotor Resistance of an Induction Motor Using Variable Rotor Flux

  • Lee Zhen-Guo;Jeong Seok-Kwon
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.282-288
    • /
    • 2005
  • In this paper, a new speed sensorless induction motor scheme which can estimate rotor speed and rotor resistance simultaneously is presented. The rotor flux with a low frequency sinusoidal waveform is used to conduct on-line simultaneous estimation of the rotor speed and rotor resistance. Hence the proposed sensorless control method is robust to rotor resistance variations. Also, the control scheme has no current minor loop to determine voltage references. It contributes to good control performance at low speeds. Some simulation results supported by experiments are given to show the effectiveness of this method.

Speed Estimation of Induction Motor in Steady State Using the RSH (RSH를 이용한 정상상태 운전 유도전동기의 회전속도 추정)

  • Yang, Chul-Oh;Park, Kyu-Nam;Song, Myung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1783-1787
    • /
    • 2011
  • The slip frequency is included in feature frequency for fault diagnosis of rotor bar, so rotating rotor speed is needed. In this study, rotor slot harmonic(RSH) method is suggested for speed estimation of induction motor. When the rotor is rotating, motor current signal include the harmonic signal of back-emf voltage related with number of rotor slot. So from the power spectrum of current signal, the rotor speed can be founded. This method of rotor speed estimation gives the slip frequency, and the feature frequency of rotor bar fault can be calculated. Comparing with stroboscope speed meter, the error rate of suggested method is less than 0.1[%].

The property change of rotating stall in one-stage axial compressor according to rotor's rotating speed variation (동익 회전속도 변화에 따른 1단 축류 압축기 선회실속의 특성변화 연구)

  • Choi, Minsuk;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.258-263
    • /
    • 2002
  • A numerical analysis using 2-D unsteady compressible program is conducted to explain characteristics of rotating stall such as rotating speed and number of stall cells in an one-stage axial compressor. Unlike an axial compressor which has only a rotor, in one-stage axial compressor a rotating stall is generated by rotor/stator interaction and tack pressure rising without any artificial disturbance and modeling. As a back pressure is raised, the separation of suction side at blades is increased uniformly, but because of the discrepancy of blockage effect by stator, the disturbances are generated to form a stall cell. Once the stall cell is formed, regularly the stall cell are rotating through rotor blades. When the speed of rotor is design speed the rotating speed of stall cell is $83.3\%$ of rotor rotating speed. When the speed of rotor is $80\%$ of design speed, the speed of rotating stall is $88.2\%$ of rotor speed. The number of generated stall cell are also varied for rotor speed and back pressure.

  • PDF

A Study of High-speed Vacuum Balancing for 38M6 Recycle Compressor (38M6 리사이클 Compressor의 고속진동 밸런싱 사례연구)

  • 이동환;김병옥;이안성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.657-662
    • /
    • 2004
  • This paper presented is a case study of a real compressor rotor of a refinery plant for high speed balancing of flexible rotor. The rotor was tested in the expert high-speed balancing facility established by KIMM at early 2004. The capability of the facility can reach 40000rpm in rotation speed and 8 ton in rotor weight for high-speed balancing. The facility performs multi-plane at-speed balancing using influence coefficient from the vibration data measured at two pedestals. The test rotor had exceeded permissible criteria of vibration at initial run. But by processing a low-speed balancing at 1000 rpm and six trial run trying to calculate influence coefficient of rotor to the range of operating speed, the final result of high-speed balancing revealed a remarkable reduce of vibration at pedestal of the rotor.

  • PDF

Development of High Speed Rotor Balancing Machine (고속회전체 밸런싱 시험기 개발)

  • Lee, Young-Seob;Lee, Jeong-Hoon;Kim, Chang-Geun;Kim, Myung-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1078-1083
    • /
    • 2000
  • A high speed rotor balancing machine was developed, which is capable of balancing a flexible rotor in high speed. The machine is largely consisted of vacuum chamber, oil supply system and vacuum pump system. And, in order to investigate performances of the machine, various tests were carried. After high speed rotor balancing of gas turbine engine rotor using influence coefficient method, the flexible engine rotor passed smoothly through its critical speed.

  • PDF

Establishment of Rotor Speed Operating Limitation for Medium Class Utility Rotorcraft (중형 기동 회전익기 로터회전수 제한 수립)

  • Park, Jonghoo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.26-32
    • /
    • 2013
  • The rotorcraft makes lift and control forces by the rotor thrust. At the development phase of the rotorcraft, the operational limitations have to be established. And it shall be demonstrated to operate the rotorcraft safely within the limitations. This paper introduces establishment and evaluation results of operational rotor speed limitations for the medium class utility rotorcraft. And it shows the follow-up activities after design changes of rotor speed indicators and aural warning systems for implementing the rotor speed limitations.

Speed-Sensorless Induction Motor Control System using a Rotor Speed Compensation (회전자 속도보상을 이용한 센서리스 유도전동기 제어 시스템)

  • Jeong Gang-Youl
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.154-161
    • /
    • 2005
  • This paper proposes a speed-sensorless induction motor control system using a rotor speed compensation. To explain the proposed system, this paper describes an induction motor model in the synchronous reference frame for the vector control. The rotor flux is estimated by the rotor flux observer using the reduced-dimensional state estimator technique. The estimated rotor speed is directly obtained from the electrical frequency, the slip frequency, and the rotor speed compensation with the estimated q-axis rotor flux. The error of the rotor time constant is indirectly reflected in the rotor speed compensation using the compensation of the flux error angle. To precisely estimate the rotor flux, the actual value of the stator resistance, whose actual variation is reflected, is derived. An implementation of pulse-width modulation (PWM) pulses using an effective space vector modulation (SVM) is briefly mentioned. For fast calculation and improved performance of the proposed algorithm, all control functions are implemented in software using a digital signal processor (DSP) with its environmental circuits. Also, it is shown through experimental results that the proposed system gives good performance for the speed-sensorless induction motor control.

Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain (회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화)

  • Kim, Yeonhee;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

Characteristic Analysis of Rotor Losses in High-Speed Permanent Magnet Synchronous Motor (초고속 영구자석형 동기 전동기의 회전자 손실 특성해석)

  • 장석명;조한욱;이성호;양현섭
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.143-151
    • /
    • 2004
  • High-speed permanent magnet machines are likely to be a key technology for electric drives and motion control systems for many applications, since they are conductive to high efficiency, high power density, small size and low weight. In high-speed machines, the permanent magnets are often contained within a retaining sleeve. However, the sleeve and the magnets are exposed to high order flux harmonics, which cause parasitic eddy current losses. Rotor losses of high-speed machines are of great importance especially in high-speed applications, because losses heat the rotor, which is often very compact construction and thereby difficult to cool. This causes a danger of demagnetization of the NdFeB permanent magnets. Therefore, special attention should be paid to the prediction of the rotor losses. This paper is concerned with the rotor losses in permanent magnet high-speed machines that are caused by permeance variation due to stator slotting. First, the flux harmonics are determined by double Fourier analysis of the normal flux density data over the rotor surface. And then, the rectilinear model was used to calculate rotor losses in permanent magnet machines. Finally, Poynting vector have been used to investigate the rotor eddy current losses of high-speed Permanent magnet machine.

Stiffness effect of fitting interference for a shrunk rotor (열박음 로터에서 간섭량의 강성 효과)

  • 김영춘;박희주;박철현;김경웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.319-324
    • /
    • 2003
  • In general industrial rotating machinery is operated under 3,600 rpm as rotating speed and designed to have critical speed that is above operating speed. So, there was no problem to operate rotating machine under critical speed. But nowadays, they should be operated more than the frist critical speed as usual with the trend of high speed, large scale and hish precision in industries. In case of the large rotor assembly as the trend of large scale, using fitting method of disk or cylinder on shaft is rising for the convenience of assembly and cutting down of manufacturing cost. The shrink fitting is used to assemble lamination part on shaft for manufacturing of rotor of motor or generator in many cases and also is widely used for other machinery. In rotating system, which is compose of rotor and bearing, the critical speed is determined from inertia and stiffness for the rotor and bearings. In case of fitting assembly, analysis and design of the rotor is not easy because the rotor stiffness is determined depend on a lot of factors such as shaft material/dimension, disk material/dimension and assembled interference etc. Therefore designer who makes a plan for hish-speed rotating machine should design that the critical speed is located out of operating range, as dangerous factors exist in it. In order to appropriate design, an accurate estimation of stiffness and damping is very important. The stiffness variation depend on fitting interference is a factor that changes critical speed and if it's possible to estimate it, that Is very useful to design rotor-bearing system. In this paper, the natural frequency variation of the rotor depends on fitting interference between basic shaft and cylinder is examined by experimentation. From the result, their correlation is evaluated quantitatively using numerical analysis that is introduced equivalent diameter end the calculation criteria is presented for designer who design fitting assembly to apply with ease for determination of appropriate interference.

  • PDF