• 제목/요약/키워드: Rotor permanent magnet

검색결과 623건 처리시간 0.034초

해상용 3 MW 영구자석형 동기발전기의 대안설계 (Alternative Design of 3MW Offshore PM Synchronous Generator)

  • 김동언;이홍기;한홍식;정영규;서형석;정진화;임민수;곽승근;오만수;최준혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2008
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The blade rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. Baseline design with surface mounted PM magnets are completed. However, there is some concern about the excessive eddy current heating in the magnets. To alleviate this problem, another design with embedded magnet is going on. With embedded magnets, the generator length should be increased to compensate the increased flux leakage. But the field fluctuation in the magnets due to the slots are greatly reduced. This means less eddy currents and lower magnet operating temperature. In this report, engineering efforts for embedded rotor is presented.

  • PDF

Double-layer AFPM 전동기의 특성해석 (Characteristics Analysis of Double-layer AFPM Motor)

  • 공정식;유현오;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 전문대학교육위원 P
    • /
    • pp.24-27
    • /
    • 1999
  • This paper proposed a method to reduce torque ripple of double-layer axial flux permanent magnet motor. Torque is generated by interacting between current of stator winding and airgap flux. In the case of slotless axial flux permanent magnet motor, only commutation torque component is significant. Hence, cogging and reluctance torque will not be considered. For this propose, we were supplied differential phase current in each winding and shifted rotor magnet. According to shifted rotor magnet and flux and phase of current were shifted, phase of developed torque in each side is difference. As a result, we could reduce the total torque ripple in motor and obtain minimum torque ripple in the case of 7.5 degree shifting angle between two rotors.

  • PDF

Cogging Torque Minimization in Permanent Magnet Brushless DC Motors for High-Speed Application

  • Jang Seok-Myeong;Cho Han-Wook;You Dae-Joon
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.146-153
    • /
    • 2005
  • In a permanent magnet brushless dc motor, cogging torque is produced by the magnetic attraction between the rotor mounted permanent magnets and the stator teeth. This always produces a pulsating torque ripple resulting in vibration and acoustic noise, which is detrimental to the motor performance. This paper deals with the analytical prediction of cogging torque and the various cogging torque minimization techniques as applied to a permanent magnet brushless dc motor.

영구자석을 이용한 회전형 MR 브레이크의 설계 (Design of MR rotary brake with permanent magnet)

  • 윤동원;박중호;함영복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1416-1421
    • /
    • 2007
  • In this paper, a novel MR brake with permanent magnet is developed. This system consists of rotary disk, permanent magnet, spring and MR fluid. Permanent magnets are attached to the rotary disk and moves in the direction of radius. The magnets are linked to rotor axis by spring. As rotation speed increases, the magnets move outward from the center of the system by centrifugal force in the MR fluid. A proper design of stator or case makes the system have unique torque characteristics. To show the performance of the system, the research is performed by following procedure. First, the electromagnetic characteristic of the system is analyzed using FEM and commercial code, Maxwell is used for this analysis. Then, torque is calculated using the result of the electromagnetic analysis to validate the performance of the system.

  • PDF

영구자석을 이용한 새로운 MR 브레이크의 해석 (Analysis of a Novel MR Rotary Brake with Permanent Magnet)

  • 윤동원;박중호;손영수;박희창;박철훈
    • 대한기계학회논문집A
    • /
    • 제33권1호
    • /
    • pp.34-41
    • /
    • 2009
  • In this paper, a novel MR brake with permanent magnet is developed. This system consists of rotary disk, permanent magnet, spring and MR fluid. Permanent magnets are attached to the rotary disk and moves in the direction of radius. The magnets are linked to rotor axis by spring. As rotation speed increases, the magnets move outward from the center of the system by centrifugal force in the MR fluid. A proper design of stator or case makes the system have unique torque characteristics. The research is performed like following procedures. First, the electromagnetic characteristic of the system is analyzed using Maxwell. Next, torque is calculated using the results of the electromagnetic analysis. Finally, the performance of various types of the brake systems are investigated and compared with each other.

Design of SPOKE Type BLDC Motor for Traction Application Considering Irreversible Demagnetization of Permanent Magnet

  • Hur Jin;Kang Gyu-Hong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.129-136
    • /
    • 2005
  • This paper presents a design strategy of SPOKE type BLDC motors considering an irreversible demagnetization of a permanent magnet (PM). So the irreversible demagnetization characteristic of the motor is analyzed by rotor structure. The instantaneous currents in either starting or lock rotor condition, which are calculated from the current dynamic analysis, are applied to the analysis of the irreversible demagnetization field by FEM. In irreversible demagnetization analysis by FEM, the variation of residual flux density in PM is analyzed using the non-linearity of magnetic core on B-H plan. The analysis results are compared to several rotor structures and used for optimize the rotor structure.

영구자석 동기전동기의 회전자 초기위치 검출법 (A Detecting Method of Initial Rotor Position for Permanent Magnet Synchronous Motor)

  • 안준영;유완식;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2136-2138
    • /
    • 1997
  • This paper describes a new detecting method of initial rotor position for PMSM without a position sensors. The proposed method uses the fact that the back-EMF is differently generated according to tile initial rotor position of Permanent Magnet Synchronous Motor (PMSM). The voltage with short duty is impressed to each phase at standstill. Then, we can detect the rotor position by comparing the amplitudes and signs of three phase current each other. Experimental results show the validity of the proposed method.

  • PDF

IPMSM의 맥동하는 구형파 신호 주입 센서리스 제어를 위한 정지좌표계상에서의 새로운 위치 추정 기법 (A Novel Rotor Position Estimation Method using a Rotation Matrix for a Square-Wave Signal Injected Sensorless Control in IPMSM)

  • 김상일;김래영
    • 전력전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.215-223
    • /
    • 2016
  • In this study, a novel rotor position sensorless estimation method of an interior permanent-magnet synchronous motor is proposed. A square-wave pulsating voltage signal is injected in the estimated synchronous reference frame. This signal is interpreted in the stationary reference frame regardless of the estimated rotor position. Thus, assuming that the position error is nearly zero is unnecessary because the variables in the estimated synchronous reference frame are not used. The rotor position can be exactly calculated from two voltage references and three sampled current feedbacks in the stationary reference frame. The proposed method is easy to implement and helps enhance the bandwidth of the current controller. The validity of the proposed method is verified by simulations and experiments.

IPM type BLDC 전동기의 진동저감을 위한 회전자 형상설계 (The Rotor Shape Design of IPM Type BLDC Motor for Minimization of Vibration)

  • 류진욱;강규홍;허진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.895_896
    • /
    • 2009
  • this paper presents a rotor shape optimization of interior type permanent magnet (IPM) motor for vibration minimization. the vibration of permanent magnet motor is generated by cogging torque, radial force and commutation torque ripple which are electromagnetic source of vibration. In order to minimize the vibration, the optimal notches are put on the rotor pole face and the arc type pole face is applied. The variations of cogging torque and radial force of each model vibration frequency are computation by finite element method (FEM) and the validity of the analysis and rotor shape design is confirmed by vibration experiments.

  • PDF

다극 회전자를 갖는 영구자석 동기 발전기의 회전자 손실 예측을 위한 해석적 접근 (Analytical Approach for Rotor Loss Prediction of Permanent Magnet Synchronous Generator with Multi-Pole Rotor)

  • 장석명;김현규;최장영;고경진;성태현;김일중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.719-720
    • /
    • 2008
  • This paper deals with analytical approach for rotor loss prediction of permanent magnet synchronous generator(PMSG). The rotor losses of synchronous generator are induced by the magnets. Since stator of our model is skewed, slotting effect can be negligible for our PM wind turbine generator. In order to calculate eddy current, this paper derives analytical solutions by the magnetic vector potential. Finally this paper compared analytical result with eddy current density obtained from finite element(FE) calculations using phase current harmonics analysis.

  • PDF