• 제목/요약/키워드: Rotor performance

검색결과 1,498건 처리시간 0.026초

비대칭 브리지 컨버터를 고려한 6/4 스위치드 릴럭턴스 전동기의 유한요소 해석 (Finite Element Analysis considering Asymmetric Bridge Converter in 6/4 Switched Reluctance Motor)

  • 최재학;박재범;이승준;안병립;이주;김석태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.720-722
    • /
    • 2003
  • This paper Presents a design schemes to minimize torque ripple in 6/4 Switched Reluctance Motor (SRM) using transient Finite Element Analysis (FEA) in which the magnetic field is combined with a driving circuit. Pole arcs and switching angles are major design factors. If these design factors are considered independently, the enhancement of SRM Performance is restricted. Therefore, this paper proposes not only optimal combination of stator pole arc and rotor pole arc but also the turn-on and turn-off angles as a function of pole arcs. Especially, turn-on and turn-off angle are formulated from a voltage equation and feasible design ranges are suggested with variable speed.

  • PDF

가변 풍속시 운전모드 절환을 고려한 이중여자 유도형 풍력발전기의 시뮬레이터 (A Wind Turbine Simulator for Doubly-Fed Induction-type Generator with Automatic Operation Mode Change during Wind Speed Variation)

  • 송승호;심동준;정병창
    • 전력전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.349-360
    • /
    • 2006
  • 이중여자 유도형 풍력발전 시스템은 다른 풍력발전 시스템에 비하여 에너지 변환 효율이 우수하고 전력변환 장치의 용량이 작아도 되는 특성이 있다. 이러한 특징을 살리기 위해서는 풍력발전 시스템에 입력되는 에너지의 변화를 고려하여 발전기의 제어기를 설계해야 한다. 본 논문에서는 상위 제어기와 하위 제어기로 구분하여 이중여자 유도 발전기의 제어기를 설계하였다. 상위 제어가는 풍력발전 시스템에 입력되는 에너지가 변화함에 따라서 발전기의 운전모드를 결정하고 제어 기준값을 계산한다. 발전기의 운전모드는 최저 속도 제어와 가변 토크 제어, 그리고 토크 제한 모드로 구성된다. 하위 제어기는 상위 제어기의 지령에 따라서 발전 시스템의 전류를 제어한다. 또한 본 논문에서는 3kW급 권선형 유도기를 사용한 이중여자 유도형 풍력발전기의 시뮬레이터를 제작하였다. 설계한 제어기는 시뮬레이터에 적용하여 실험적으로 검증하였다.

Unbalanced Magnetic Forces in Rotational Unsymmetrical Transverse Flux Machine

  • Baserrah, Salwa;Rixen, Keno;Orlik, Bernd
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.184-192
    • /
    • 2012
  • The torque and unbalanced magnetic forces in permanent magnet machines are resultants of the tangential, axial and normal magnetic forces, respectively. Those are in general influenced by pole-teeth-winding configuration. A study of the torque and unbalanced magnetic forces of a small flux concentrating permanent magnet transverse flux machine (FCPM-TFM) in segmented compact structure is presented in this paper. By using FLUX3D software from Cedrat, Maxwell stress tensor has been solved. Finite element (FE-) magneto static study followed by transient analysis has been conducted to investigate the influence of unsymmetrical winding pattern, in respect to the rotor, on the performance of the FCPM-TFM. Calculating the magnetic field components in the air gap has required an introduction of a 2D grid in the middle of the air gap, whereby good estimations of the forces are obtained. In this machine, the axial magnetic forces reveal relatively higher amplitudes compared to the normal forces. Practical results of a prototype motor are demonstrated through the analysis.

센서리스 구동 브러시리스 DC 모터의 기동 특성 개선에 관한 연구 (A Study on starting Characteristics Improvement of Sensorless BLDC Motor)

  • 홍선기
    • 조명전기설비학회논문지
    • /
    • 제19권5호
    • /
    • pp.54-59
    • /
    • 2005
  • 브러시리스 직류 전동기(Brushless U Motor : BLDCM)는 기존의 직류 전동기의 단점인 브러시를 제거한 것으로 제어가 간단하면서도 넓은 범위에서 속도 제어가 가능하고 효율이 높으며 경제적으로 제어기 제작이 가능하여 산업용 뿐 아니라 가전에까지 널리 사용된다. 그러나 BLDCM을 구동하는데 필수적인 센서는 제품 가격을 증가시킬 뿐만 아니라 운전 환경이 열악한 곳에서는 동작 오류를 발생하는 원인이 되고 있다. 본 논문에서는 BLDCM의 센서리스 구동에서 정상상태 운전뿐만 아니라 안정된 초기 구동에 관한 연구를 수행한다. 정상상태 운전은 측정된 역기전력을 이용하여 회전자의 위치를 결정함으로써 이루어지며, 초기 구동을 개선하기 위해 환류 다이오드로부터 측정된 전류 신호를 이용하여 초기 구동을 하게 된다. 이것은 실험을 통해 타당성을 확인하였다.

적응학습 퍼지뉴로 제어를 이용한 IPMSM 드라이브의 HIPI 제어기 (HIPI Controller of IPMSM Drive using ALM-FNN Control)

  • 김도연;고재섭;최정식;정철호;정병진;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.420-423
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

전류궤환에 의한 영구자석 동기 전동기의 약계자 제어 (Field Weakening Control of IPMSM Using Current Feedback)

  • 윤병도;김윤호;김종구;최원범;이병송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.347-349
    • /
    • 1995
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. This paper proposes a new field-weakening control algorithm using phase current feedback to improve the torque characteristics and to reduce the torque ripple of IPMSM in the constant power region. The improved torque characteristics of speed control strategy with current feedback control algorithm is analyzed and the performance is investigated by the computer simulation results.

  • PDF

다자유도 구형 구동 모터의 와전류 손실 저감을 통한 효율 향상 연구 (Improve of Efficiency of Multi D.O.F Spherical Motor Through the Reduction of Eddy Current Loss)

  • 홍경표;김용;장익상;이호준;강동우;원성홍;이주
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.50-56
    • /
    • 2012
  • The Multi D.O.F spherical motor can drive rotating as well as tilting three degree of freedom with one motor. Existing three degree of freedom to drive with three motors that are connected by gears and belts, that will be too large size and big loss at gears and belts. So Reducing system size and improving efficient is using the Multi D.O.F spherical motor in three degree of freedom systems. For this reason, efficiency of Multi D.O.F spherical motor is one of the important performance indiccators. In this paper presented that how to improve the efficiency of the Multi D.O.F spherical motor. The fist of method is using the stator iron core's material with high permeability and resistivity for reducing the eddy current loss. However, it was the disadvatages of motor-making and economic. So author propose the resonable method of reducing the eddy current loss in the stator iron core. That is using the rotor with double-air gap.

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

전자석 바이어스 Diskless반경방향-축방향 일체형 자기 베어링 해석 (Analysis of an Electromagnet Biased Diskless Integrated Radial and Axial Magnetic Bearing)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.959-967
    • /
    • 2012
  • The theory for a new electromagnetically biased diskless combined radial and axial magnetic bearing is developed. A typical magnetic bearing system is composed of two radial magnetic bearings and an axial magnetic bearing. The axial magnetic bearing with a large axial disk usually limits rotor dynamic performance and makes assembling and disassembling difficult for maintenance work. This paper proposes a novel electromagnet biased integrated radial-axial magnetic bearing without axial disk. This integrated magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. The axial magnetic bearing unit in this combined magnetic bearing utilizes reluctance forces developed in the non-uniform air gaps such that the axial disk can be removed from the bearing unit. The 4-pole homopolar type radial magnetic bearing unit is also designed and analyzed. Three dimensional finite element model for the bearing is also developed and analyzed to illustrate the diskless combined magnetic bearing.

A Study on the Compensation of the Inductance Parameters of Interior Permanent-Magnet Synchronous Motors Affected by the Magnet Size

  • Jang, Ik-Sang;Lee, Hyung-Woo;Kim, Won-Ho;Cho, Su-Yeon;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Ju
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.74-76
    • /
    • 2011
  • Interior permanent-magnet synchronous motors (IPMSMs) produce both magnetic and reluctance torques. The reluctance torque is due to the difference between the d- and q-axis inductances based on the geometric rotor structure. The steady-state performance analysis and precise control of the IPMSMs greatly depend on the accurate determination of the parameters. The three essential parameters of the IPMSMs are the armature flux linkage of the permanent magnet, the d-axis inductance, and the q-axis inductance. In the basic design step of an IPMSM, the inductance parameters are very important for determining the motor characteristics, such as the input voltage, torque, and efficiency. Thus, it is very important to accurately estimate the values of the motor inductances. The inductance parameters of IPMSMs have nonlinear characteristics along the magnet size because the iron core is saturated by the magnet and armature reaction fluxes. In this study, the inductance parameters were calculated using both the magnetic-equivalent-circuit method and the finite-element method (FEM). Then the calculated parameters were compensated by the saturation coefficient function, which was also calculated via the magnetic-equivalent-circuit method and FEM.