• 제목/요약/키워드: Rotor Flux Observer

검색결과 135건 처리시간 0.028초

확장된 Luenberger 관측기를 이용한 유도전동기 회전자 자속추정 (Rotor Flux Estimation of Induction Motor Using Extended Luenberger Observer)

  • 최연옥
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.600-604
    • /
    • 2000
  • In this paper authors proposed a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on theory of the extended Luenberger observer(ELO) one of a nonlinear state observer. The proposed rotor flux observer is derived from the 2 phase model of induction motor by the theory of ELO. The simulation results taken under the varying condition of rotor resistance and load torque show fast convergence of estimated rotor flux and high performance of IM drive system is achieved 표 experiment.

  • PDF

New Strategy to Estimate The Rotor Flux of Induction Motor by Analyzing Observer Characteristic Function

  • Kim, Jang-Hwan;Park, Jong-Woo;Sul, Seung-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.51-58
    • /
    • 2001
  • This paper proposes a new strategy to estimate the rotor flux of an induction machine for the direct field oriented control. Electrical model of the induction machine presents the basic idea based on observer structure, which is composed of voltage model and current model. But the former has the defects in low speed range, the latter has the defects of sensitivity to machine parameters. In spite of these shortcomings, the closed loop flux observer based on two models has been prevalent estimation method for the direct field oriented control. In this paper, generalized analysis method named "observer characteristic function method"is proposed to analyze the kinds of the linear flux observers in unified form. With the observer characteristic function, the estimated rotor flux error involved in the classical methods can be easily clarified. Moreover, the novel rotor flux observer based on this analysis is also presented and the effectiveness of the observer has been verified by the simulation and experimental results.

유도전동기 구동을 위한 신경망 적응 관측기에 대한 연구 (A Study on the Neural Adaptive Observer for I.M. Drives)

  • 전희종;김병진;손진근;정을기;김진상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.216-218
    • /
    • 1995
  • In this article a neural network adaptive observer is proposed and applied to the case of induction motor control. The high performance vector control drives require exact knowledge of rotor flux. Because rotor time constant is needed to observe rotor flux, the accurate estimation of rotor time constant is important. For these problems, proposed observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subject to further on-line training by means of a backpropagation algorithem. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations.

  • PDF

자속관측기를 이용한 유도전동기 센서리스제어의 특성해석 (A Study on the Characteristics of Thyristor Controlled Shunt Compensator)

  • 박용환;최종우;김흥근;김진규;최영태;노의철;전태원
    • 전력전자학회논문지
    • /
    • 제8권4호
    • /
    • pp.299-306
    • /
    • 2003
  • 유도전동기의 벡터제어를 수행하기 위해서 회전자 자속의 위치정보가 필수적이다. 하지만 정확한 회전자 위치정보를 얻기 위해서는 속도정보가 필수적이다. 속도정보 없는 개루프 방식의 제어나 전동기 방정식을 이용하는 방법들은 노이즈나 전동기 상수오차등에 의해 적용하기 어렵다. 본 논문에서는 자속관측기와 속도추정기를 분리하여 임의의 자속관측기를 사용할 수 있는 속도추정기를 제안하고 기존의 세 가지 자속관측기를 제안된 속도추정기에 적용하였다. 시뮬레이션 및 실험을 통하여 제안된 속도추정기의 타당성을 검증하였고 세 가지 자속관측기의 특성을 분석하였다.

Wide-Range Sensorless Control for SPMSM Using an Improved Full-Order Flux Observer

  • Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.721-729
    • /
    • 2015
  • A sensorless control method was recently investigated in the robot and automation industry. This method can solve problems related to the rise of manufacturing costs and system volume. In a vector control method, the rotor position estimated in the sensorless control method is generally used. This study is based on a conventional full-order flux observer. The proposed full-order flux observer estimates both currents and fluxes. Estimated d- and q-axis currents and fluxes are used to estimate the rotor position. In selecting the gains, the proposed full-order flux observer substitutes gain k for the speed information in the denominator of the gain for fast convergence. Therefore, accurate speed control in a low-speed region can be obtained because gains do not influence the estimation of the rotor position. The stability of the proposed full-order flux observer is confirmed through a root-locus method, and the validity of the proposed observer is experimentally verified using a surface permanent-magnet synchronous motor.

미지의 회전자 저항을 갖는 유도기의 적응 자속 관측자 설계 (An Adaptive Flux Observer of Induction Motors with Unknown Rotor Resistance)

  • 김도우;양해원;윤지섭;박병석;김홍필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.438-441
    • /
    • 1998
  • In this paper, we proposes an adaptive flux observer to estimate initial values of rotor fluxes and unknown rotor resistance. The error system between the model of induction motor and a proposed observer is devided as a fast subsystem and a slow one by a singular perturbation system. The fast subsystem is exponentially convergent on a boundary-layer. And the overall error system is reduced to a quasi-steady-state system. The adaptive law for an unknown rotor resistance is designed to stabilize the approximate error system. As computer simulation results show, the proposed adaptive flux observer estimates fast initial values of rotor fluxes and unknown rotor resistance.

  • PDF

확장된 루엔버거 관측기를 이용한 유도전동기 회전자 자속 추정 (Rotor Flux Estimation of an Induction Motor using the Extended Luenberger Observer)

  • 조금배;최연옥;정삼용
    • 전력전자학회논문지
    • /
    • 제6권2호
    • /
    • pp.115-124
    • /
    • 2001
  • 본 논문에서는 유도전동기 회전자 자속 기준제어를 위하여 비선형 관측기인 확장된 루엔버거 관측기 원리를 적용한 새로운 회전자 자속관측기를 제안하였다. 확장된 루엔버거 관측기는 확장된 칼만 필터와 유사하게 동특성 오차의 선형화 기법을 따트고 있으나 통계학적 속성의 노이즈 공분산을 고려하지 않는 결정론적 관측기로서 비선형 상태관측기 설계시 요구되는 좌표변환 및 선형화 파정에서 비선형 편미분 방정식의 직접적인 해를 펼요로 하지 않아 구현이 비교적 용이하다. 제안된 회전자 자속관측기는 직교좌표의 고정자 전류, 회전자 자속, 속도 및 부하 토크로 구성된 6차 미분방정식으로부터 유도되었으며 축약된 형태의 이득행렬을 갖는다. 시뮬레이션 및 실험은 파라 미터중 회전자 저항 값이 변동된 상황을 가정하여 수행하였으며, 시뮬레이션 결과 제안된 관측기를 이용한 자속 추정시 극점 재배치를 통하여 동특성 오차의 수렴성을 제어할 수 있으며, 부하 설험결과 제안된 관측기를 적용하는 경우에는 슬립적분형 간접벡터제어에 비해 보다 정확한 벡터제어가 가능함이 확인되었다.

  • PDF

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템 (A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;김민호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템 (A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;백원식;김동희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF