• 제목/요약/키워드: Rotor Flux

검색결과 761건 처리시간 0.023초

동적 고성능 응답을 위한 유도전동기의 근사적 비간섭 제어 (Asymptotic Decoupled Control of Induction Motors for High Dynamic Performance)

  • 김동일;고명삼;하인중;박재화
    • 대한전기학회논문지
    • /
    • 제38권11호
    • /
    • pp.877-887
    • /
    • 1989
  • In this paper, we attempt to achieve high dynamic performance by means of decoupled control of rotor speed and flux. Recently developed nonlinear feedback control theories are utilized. The rotor fluxes are estimated based on the rotor circuit equations. When the estimation error of the rotor flux tends to zero, the rotor speed and flux dynamic characteristics of the induction motor with our controller become linear. To minimize the deterioration of control performance, we use an identification algorithm for the rotor resistance. We analyze the dynamic behavior of the closed loop system with our controller. Both simulation and experimental results are included to demonstrate the practical significance of our result. In particular, our experimental results show that recently developed nonlinear feedback control techniques are of practical use in control of induction motors.

  • PDF

New Strategy to Estimate The Rotor Flux of Induction Motor by Analyzing Observer Characteristic Function

  • Kim, Jang-Hwan;Park, Jong-Woo;Sul, Seung-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.51-58
    • /
    • 2001
  • This paper proposes a new strategy to estimate the rotor flux of an induction machine for the direct field oriented control. Electrical model of the induction machine presents the basic idea based on observer structure, which is composed of voltage model and current model. But the former has the defects in low speed range, the latter has the defects of sensitivity to machine parameters. In spite of these shortcomings, the closed loop flux observer based on two models has been prevalent estimation method for the direct field oriented control. In this paper, generalized analysis method named "observer characteristic function method"is proposed to analyze the kinds of the linear flux observers in unified form. With the observer characteristic function, the estimated rotor flux error involved in the classical methods can be easily clarified. Moreover, the novel rotor flux observer based on this analysis is also presented and the effectiveness of the observer has been verified by the simulation and experimental results.

자속 모델 기준 추종방식을 이용한 SRM 회전자 위치평가알고리즘 비교 (Comparison of SRM rotor position estimation algorithm using flux-current methods)

  • 안재황
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.697-700
    • /
    • 2000
  • This paper introduces a new rotor position estimation algorithm for the SRM based on the magnetizing curves of aligned and unaligned rotor positions. The flux linkage is calculated by the measured data from phase voltage and phase current and the calculated data are used as the input of magnetizing profiles for rotor position detection. Each of the magnetizing profiles consisted of the methods using the neural network and fuzzy algorithm And also the optima phase is selected by phase selector. To demonstrate the promise of this approach the proposed rotor position estimation algorithms are verified by the experiment results or variable spee range.

  • PDF

유도전동기 회전자 저항 보상을 위한 벡터제어 (Vector Control for the Rotor Resistance Compensation of Induction Motor)

  • 박현철;이수원;김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

자속추정기에 의한 유도전동기 센서리스 속도제어 (SENSORLESS SPEED CONTROL OF INDUCTION MOTOR WITH SPEED ESTIMATOR)

  • 김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.432-439
    • /
    • 1999
  • Several methods of induction motor drives which used speed estimators instead of shaft encoders have been reported. However those speed sensorless systems with estimators employing stator voltates and currents usually deteriorates as the speed gets lower because it is difficult to calculate the accurate rotor flux under the influence of DC-offset and saturation of integrators. In this paper to calculate rotor flux at low speed the new rotor flux estimator which replaces integra-tors with two lag circuits is proposed. Simulation and experiment results confirm the validity of this control scheme.

  • PDF

Input-Output Feedback Linearization of Sensorless IM Drives with Stator and Rotor Resistances Estimation

  • Hajian, Masood;Soltani, Jafar;Markadeh, Gholamreza Arab;Hosseinnia, Saeed
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.654-666
    • /
    • 2009
  • Direct torque control (DTC) of induction machines (IM) is a well-known strategy of these drives control which has a fast dynamic and a good tracking response. In this paper a nonlinear DTC of speed sensorless IM drives is presented which is based on input-output feedback linearization control theory. The IM model includes iron losses using a speed dependent shunt resistance which is determined through some effective experiments. A stator flux vector is estimated through a simple integrator based on stator voltage equations in the stationary frame. A novel method is introduced for DC offset compensation which is a major problem of AC machines, especially at low speeds. Rotor speed is also determined using a rotor flux sliding-mode (SM) observer which is capable of rotor flux space vector and rotor speed simultaneous estimation. In addition, stator and rotor resistances are estimated using a simple but effective recursive least squares (RLS) method combined with the so-called SM observer. The proposed control idea is experimentally implemented in real time using a FPGA board synchronized with a personal computer (PC). Simulation and experimental results are presented to show the capability and validity of the proposed control method.

Rotor Position Estimation Strategy Using Artificial Neural Network for a Novel Design Transverse Flux Machine

  • Turker, Cigdem Gundogan;Kuyumcu, Feriha Erfan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2009-2017
    • /
    • 2015
  • The E-Core Transverse Flux Machine is a different design of transverse flux machines combined with reluctance principle. Determination of the rotor position is important for the movement of the ETFM by switching the phase currents in synchronism with the inductance regions of the stator windings. It is the first time that rotor position estimation based on Artificial Neural Network (ANN) is purposed to eliminate the position sensor for the ETFM. Simulation and experimental tests are demonstrated for the feasibility of the proposed estimation algorithm for the exercise bike application of the ETFM.

공급자속 측정에 의한 유도전동기의 회전자 진동 검출기법 (A Method for Rotor Vibration Detection of Induction Motor by Air-gap Flux Measurement)

  • 황돈하;한상보;선종호;강동식
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.379-384
    • /
    • 2007
  • In this paper, a new method for detecting rotor vibrations in a squirrel-cage induction motor is proposed. The air-gap flux variation analysis was done using search coils inserted in stator slots when rotor vibration conditions occurs. An accurate modelling and analysis of air-gap flux variation in the induction motor are developed using finite-element (FE) software packages, and treasuring the flux are made using search coils. In the FE analysis and experiment, the three-phase squirrel-gage induction motor with 380 [V], 7.5 [kW], 4 Poles, 1,768 [rpm] ratings is used. The simulation and experiment results can be useful for detecting rotor vibration of the induction motors.

  • PDF

단일치 권선을 가지는 분절회전자형 12/8SRM의 설계 및 특성해석 (Design and Characteristics Analysis of Segmental Rotor Type 12/8 poles SRM with single teeth windings)

  • 정광일;이동희;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.39-40
    • /
    • 2014
  • In this paper, a novel 12/8 segmental rotor type switched reluctance motor (SRM) is proposed. Different from conventional structures, the proposed rotor consists of a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. Moreover, in this structure short flux paths are taken and no flux reverse exists in the stator. While the auxiliary poles are not wound by the windings, which only provide the flux return path. Compared with conventional 12/8 SRM, the proposed structure increases the electrical utilization of the machine and decreases the core losses, which may lead to high efficiency. To verify the proposed structure, finite element method (FEM) is employed to get static and dynamic characteristics. Finally, a prototype of the proposed motor is tested for characteristics comparisons.

  • PDF