• Title/Summary/Keyword: Rotor Blade

Search Result 779, Processing Time 0.022 seconds

Aerodynamic Performance Prediction of Horizontal Axis Wind Turbine by Vortex Lattice Method (와류 격자법에 의한 수평축 풍력터빈의 공기역학적 성능예측)

  • 유능수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1264-1271
    • /
    • 1990
  • The vortex lattice method was adopted to predict the aerodynamic performance of a horizontal axis wind turbine. For this simulation. the rotor blade was divided into many panels both in chordwise and spanwise direction and then replaced by horseshoe vortices. The wake was divided into two parts of near wake and far wake : the near wake was assumed as helical vortex line elements and the far wake was modeled by semi-infinite circular vortex cylinder. The induced velocity components were calculated by the Biot-Savart law. By this way the power coefficient was obtained and represented as a function of the tip speed ratio. The numerical results obtained were compared with those of the other methods and experimental results and showed good agreement with experimental results.

A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel (풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구)

  • Ui-Jin Hwang;Jae-Sang Park;Myeong-Kyu Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.45-55
    • /
    • 2023
  • This study conducted aeromechanics modeling and structural load analyses of Tilt Rotor Aeroacoustic Model (TRAM), a 25% scaled V-22 tiltrotor model used in wind tunnel tests. A rotorcraft comprehensive analysis code, CAMRAD II, was used. Analysis results of this study in low-speed forward flights were compared with DNW test and previous analysis results. Blade flap bending moments were in good agreement with measured data. Mean values and oscillatory loads for lead-lag bending and torsion moments were slightly different from measured data. However, when mean values were removed, results of structural loads for one rotor revolution were moderately compared with wind tunnel tests and previous analyses. Total forces and half peak-to-peak forces of the pitch link reasonably well matched with previous analysis results and measured data. Finally, harmonic magnitudes of blade structural loads were investigated.

Rotor Track and Balance of a Helicopter Rotor System Using Modern Global Optimization Schemes (최신의 전역 최적화 기법에 기반한 헬리콥터 동적 밸런싱 구현에 관한 연구)

  • You, Younghyun;Jung, Sung Nam;Kim, Chang Ju;Kim, Oe Cheul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.524-531
    • /
    • 2013
  • This work aims at developing a RTB (Rotor Track and Balance) system to alleviate imbalances originating from various sources encountered during blade manufacturing process and environmental factors. The analytical RTB model is determined based on the linear regression analysis to relate the RTB adjustment parameters and their track and vibration results. The model is validated using the flight test data of a full helicopter. It is demonstrated that the linearized model has been correlated well with the test data. A hybrid optimization problem is formulated to find the best solution of the RTB adjustment parameters using the genetic algorithm combined with the PSO (Particle Swarm Optimization) algorithm. The optimization results reveal that both track deviations and vibration levels under various flight conditions become decreased within the allowable tolerances.

Numerical Analyses on the Aerodynamic Characteristics of an Axial Type In-line Duct Fan (축류식 In-line duct fan의 공력특성에 관한 전산해석)

  • Cho, Lee-Sang;Ahn, Kwang-Weon;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Numerical analyses on the aerodynamic characteristics of a counter rotating axial flow fan were conducted for the development of an axial type in-line duct fan. The counter rotating fan has a front rotor and a rear rotor which are counter rotating each other. Blade design of the counter rotating fan was done by extension of design method for axial flow fan which consists of rotor and stator blades. Through flow analysis was performed using matrix method which is applied for flow fields prediction of compressors or turbines. Aerodynamic characteristics and characteristic curves of the counter rotating fan were analyzed by expansion of the frequency domain panel method with duct modeling. Pressure losses were higher at leading edge and hub region of rotor blades. Characteristic curve of the counter rotating fan was overpredicted without consideration of viscous effect.

Investigation on Prediction Methods for a Rotor Averaged Inflow in Forward Flight (전진비행하는 회전익기 로터의 평균 유입류 예측기법 연구)

  • Hwang, Chang-Jeon;Chung, Ki-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Prediction methods for a rotor averaged inflow in forward flight are investigated in this study. The investigated methods are Drees linear inflow model, Mangler & Squire model and free vortex wake(FVW) method. Predictions have been performed for a four-blade rotor operating at three different advance ratios i.e. 0.15, 0.23 and 0.30, at which experimental data are available. According to results, Drees model has a limitation for the inflow non-uniformity prediction due to an inherent linear characteristics. Mangler & Squire model has a reasonable accuracy except the disk edge region. KARI FVW method has very good accuracy and has better accuracy than the other FVW method especially in inboard region. However, there are some discrepancies in retreating side due to the dynamic stall effect and in near hub region due to the fuselage upwash effect.

Measurement of Gravity Center for Rotor Blades by Compensation of Machining Error in Jig (지그의 가공오차 보정에 의한 블레이드 무게 중심 측정)

  • Kong, Jae-Hyun;Kim, Ki-Sung;Ye, Sang-Don;Chun, See-Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.41-47
    • /
    • 2010
  • There are many unbalanced models such as helicopter's rotor blades, small-sized precision motor in industrial applications. In the real products, their gravity center usually does not accord with the desired gravity center. If the deviation is large between them, it can be a major cause of vibration and noise as the part of model rotate. Therefore the gravity center in the rotational parts should be controlled properly because of static and dynamic balancing of the parts. In the research, the rotor blade of unmanned helicopter has been selected to obtain the high quality of balancing. In order to achieve the purpose, measuring system has been developed. In the system applied principle is three point weighting method, which is one of the Multiple-point Weighting Method. It has circle fitting for compensation of machining error, after measuring the values. From this study, the results showed that the proposed measurement procedure gives reliable and precise gravity center.

Vibration Reduction Devices for Korean Utility Helicopter (한국형기동헬기 진동저감장치)

  • Jung, Se-Un;Kwak, Dong-Il;Kim, Se-Hee;Choi, Jong-Ho;Shim, Dai-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.987-993
    • /
    • 2013
  • Korean Utility Helicopter(KUH) is the first korean-developed helicopter. Its first flight was performed in March 2010 and then its development was completed successfully by June 2012. During flight test phase, KUH faced various vibration problems and appropriate vibration-reduction devices were designed and applied to solve the problems. The vibration-reduction devices were applied to main rotor blades, main gear box(MGB) supporting structure, cockpit, cabin and pilot seats to reduce rotor-induced 4/rev vibration. Also, dome-fairing was introduced in order to reduce the tail-shake vibration. This paper shows design technique and flight test results for vibration-reduction devices that have been incorporated into KUH.

The Application of CFD for the Duct System Design of CRW aircraft (CRW 비행체 덕트 시스템 설계를 위한 CFD의 활용)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.200-205
    • /
    • 2003
  • The Canard rotor/wing (CRW) aircraft concepts offer great potential for application by allowing the use of a common propulsion system for high-speed cruise and low-speed powered lift. Using the rotor for lift in both flight modes increases its utility. In the hovering mode, the exhausted gas from an gas turbine engine is accelerated through the duct system and it provides the tipjet power for rotor system enough to lift the aircraft. In the cruise mode, the rotor is fixed and the exhausted gas is extracted through the main nozzle, such that the aircraft is able to flight with high speed. The duct system was designed using 1-D fanno line flow theory and empirical data. However, the empirical data of the pressure loss coefficient for various bending and dividing ducts were not enough to design our duct system adaptively. Therefore, using 3-D CFD analysis we obtained the pressure loss coefficient for our duct models and chose the appropriate bending or diving duct type. In this paper, we used the CFD-ACE+ software package for the CFD analysis and the modeling of duct system. Through the 3-D CFD analysis, we investigated also the pressure loss and the velocity distributions of the designed whole duct system as well as the blade duct. Comparing the 3-D CFD result with 1-D analysis result, we lessened the uncertainty of the designed duct system and speculated the problem that was not concerned in design state.

  • PDF

High Cycle Fatigue Life Evaluation of Damaged Composite Rotor Blades (손상된 복합재 로터 블레이드의 고주기 피로수명 평가)

  • Kee, Young-Jung;Kim, Seung-Ho;Han, Jeong-Ho;Jung, Jae-Kwon;Heo, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1275-1282
    • /
    • 2012
  • Helicopter rotor systems are dynamically loaded structures with many composite components such as the main and the tail rotor blades. The fatigue properties of composite materials are extremely important to design durable and reliable helicopter rotor blades. The safe-life methodology has generally been used in the helicopter industry to substantiate dynamically loaded composite components. However, it cannot be used to evaluate the strength reducing effects of flaws and defects that may occur during manufacturing and operational usage. The damage tolerance methodology provides a proper means to overcome this shortcoming; however, it is difficult to economically apply it to every composite component. The flaw tolerant methodology is an equivalent option to the damage tolerance methodology for civil and military rotorcraft. In this study, the flaw tolerant safe-life evaluation is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

Analysis of shaft torsion of a DFIG for a wind farm collector system fault (풍력발전단지 집합 시스템 사고 시 DFIG의 Shaft Torsion 분석)

  • Yoon, Eui-Sang;Lee, Jin-Shik;Lee, Young-Gui;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.93-94
    • /
    • 2011
  • This paper analyzes the shaft torsion of a doubly-fed induction generator (DFIG) for a wind farm collector system fault. When a fault occurs, the active power of the DFIG cannot be transmitted to the grid and thus accelerates the rotation of both the blade and the rotor. Due to the different inertia of these, the angle of deviation fluctuates and the shaft torsion is occurred. This becomes much severe when the rotational speed of the blade exceeds a threshold, which activating the pitch control to reduce the mechanical power. The torque, which can be sixty times larger than that in the steady state, may destroy the shaft. The shaft torsion phenomena are simulated using the EMTP-RV simulator. The results indicate that when a wind farm collector system fault occurs, a severe shaft torsion is occurred due to the activation of the pitch control.

  • PDF