• 제목/요약/키워드: Rotational diffusion

검색결과 42건 처리시간 0.02초

Temperature Dependence on Structure and Self-Diffusion of Water: A Molecular Dynamics Simulation Study using SPC/E Model

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3800-3804
    • /
    • 2013
  • In this study, molecular dynamics simulations of SPC/E (extended simple point charge) model have been carried out in the canonical NVT ensemble over the range of temperatures 300 to 550 K with and without Ewald summation. The quaternion method was used for the rotational motion of the rigid water molecule. Radial distribution functions $g_{OO}(r)$, $g_{OH}(r)$, and $g_{HH}(r)$ and self-diffusion coefficients D for SPC/E water were determined at 300-550 K and compared to experimental data. The temperature dependence on the structural and diffusion properties of SPC/E water was discussed.

Ethanol이 배양된 Mouse Myeloma Cell Line Sp2/0-Ag14로부터 분리한 형질막의 유동성에 미치는 영향 (Effects of Ethanol on the Fluidity of Plasma Membrane Vesicles Isolated from Cultured Mouse Myeloma Cell Line Sp2/0-Ag14)

  • 윤일;정인교;박영민;김진범;유성호;강정숙
    • 대한약리학회지
    • /
    • 제29권1호
    • /
    • pp.149-156
    • /
    • 1993
  • Ethanol이 암세포 증식 속도에 미치는 직접적인 영향 검색의 일환으로 배양된 mouse myeloma cell line Sp2/0-Ag14로부터 분리한 형질막 (Sp2/0-PMV) 유동성에 미치는 ethanol의 영향을 형광분석법으로 측정하였다. 그 결과 ethanol은 Sp2/0-PMV 지질 이중층 측방확산운동의 범위와 속도를 증가시켰고 회전확산운동 범위도 증가시켰다. 특히 ethanol은 Sp2/0-PMV 지질이중층 중 내부단층 (inner monolayer)에 비하여 비교적 선택적으로 외부단층 (outer monolayer)의 회전확산운동 범위를 증가시킨다는 것을 확인하였다.

  • PDF

An NMR Study on Molecular Motions of $\alpha$,2,6-Trichlorotoluene in Solution State

  • Ahn, Sang-Doo;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권7호
    • /
    • pp.553-559
    • /
    • 1994
  • Dynamics of $CH_2CI$ group in ${\alpha},2,6$-trichlorotoluene dissolved in $CDCl_3$ was studied by observing various relaxation modes for $^{13}C$ under proton undecoupled condition. Partially relaxed $^{13}C$ spectra were obtained at $34^{\circ}C$ as a function of evolution time after applying various designed pulse sequences to this $AX_2$ spin system. It was found that nonlinear regression analysis of the relaxation data for these magnetization modes could provide the information about dipolar and spin-rotational auto-correlation and cross-correlation spectral densities for fluctuation of the $^{13}C-^1H$ internuclear vector in $CH_2Cl$ group. The results show that the effect of cross-correlation is comparable in magnitude to that of auto-correlation and the relaxation in this spin system is dominated by dipolar mechanism rather than spin-rotational one. From the resulting spectral density data we could calculate the bond angle ${\angle}HCH\;(105.1$^{\circ}$) and elements of the rotational diffusion tensor for $CH_2Cl$ group.

초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구 (Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors)

  • 박기철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

기울어진 예혼합 평면화염의 안정성 (Stability of Inclined Premixed Planar Flames)

  • 이대근;김문언;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.97-106
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in gravitational field which generate vorticity is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

기울어진 예혼합 평면화염의 안정성 (Stability of Inclined Premixed Planar Flames)

  • 이대근;김문언;신현동
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.9-21
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in the gravitational field is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

대기오염모델에서의 이류방정식에 대한 수치적 방법의 비교 (A Comparison of Numerical Methods for the Advection Equation for Air Pollution Models)

  • 심상규;박영산
    • 한국대기환경학회지
    • /
    • 제8권3호
    • /
    • pp.162-168
    • /
    • 1992
  • Numerical solutions to the advection equations used for long-range transport air pollution models are calculated using three numerical methods; Antidiffusion correction method(Smolarkiewicz, 1983), Positive definite advecton scheme obtained by nonlinear renormalization of the advective fluxes(Bott, 1989), and Positive definite pseudospectral method(Bartnicki, 1989). Accuracy, numerical diffusion and computational time requirement are compared for two-dimensional transport calculations in a uniform rotational flow field. The solutions from three methods are positive definite. Bartnicki(1989)'s method is most conservative but requires approximately 10 times as much computational time as Smolarkiewicz(1983)'s method of which numerical diffusion is the largest. All three methods are more conservative for a cone shape initial condition than for a rectangular block initial condition with a steep gradient.

  • PDF

Characterization of Internal Reorientation of Methyl Group in 2,6-Dichlorotoluene

  • Nam-Goong, Hyun;Rho, Jung-Rae
    • 한국자기공명학회논문지
    • /
    • 제13권1호
    • /
    • pp.35-55
    • /
    • 2009
  • The two correlation times previously obtained in our coupled $^{13}C$ relaxation measurement for the methyl group in 2,6-dichlorotoluene may be used as a criterion for evaluating the reorientation dynamics of an internal rotor. We numerically tested an extended diffusion model and the Smoluchowski diffusion equation to see how the rotational inertial effect and jump character contribute to the internal correlation time ratio of the internal rotor. We also analytically solved the general jump model with three different rate constants in a sixfold symmetric potential barrier. By assuming that the internal rotation of the methyl group in 2,6-dichlorotoluene can be described in terms of jumps among sixfold harmonic potential wells, we can conclude that the jump model satisfactorily reproduce the experimental data and the rate for sixfold jump is at least 1.53 times as great as that of a threefold jump.

Transport Properties of Dumbbell Molecules by Equilibrium Molecular Dynamics Simulations

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.737-741
    • /
    • 2004
  • We presents new results for transport properties of dumbbell fluids by equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. It is evident that the interaction between dumbbell molecules is less attractive than that between spherical molecules which leads to higher diffusion and to lower friction. The calculated viscosity, however, is almost independent on the molecular elongation within statistical error bar, which is contradicted to the Stokes' law. The calculated thermal conductivity increases and then decreases as molecular elongation increases. These results of viscosity and thermal conductivity for dumbbell molecules by EMD simulations are inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations. The possible limitation of the Green-Kubo and Einstein formulas with regard to the calculations of viscosity and thermal conductivity for molecular fluids such as the missing rotational degree of freedom is pointed out.

Colloidal Crystallization in Microgravity

  • Okubo, Tsuneo
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.5-6
    • /
    • 2003
  • Kinetic study on the colloidal crystallization of single component and mixture of different sizes or densities of spheres was made in the exhaustively deionized suspensions and in microgravity, and compared with the results in normal gravity. Colloidal crystallization rates were retarded in microgravity for single component of spheres, whereas rates of alloy crystallization were enhanced substantially in microgravity. The rotational diffusion coefficients of colloids and the formation reaction rates of colloidal silica spheres were also studied in microgravity.

  • PDF