Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.5.737

Transport Properties of Dumbbell Molecules by Equilibrium Molecular Dynamics Simulations  

Lee, Song-Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
We presents new results for transport properties of dumbbell fluids by equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. It is evident that the interaction between dumbbell molecules is less attractive than that between spherical molecules which leads to higher diffusion and to lower friction. The calculated viscosity, however, is almost independent on the molecular elongation within statistical error bar, which is contradicted to the Stokes' law. The calculated thermal conductivity increases and then decreases as molecular elongation increases. These results of viscosity and thermal conductivity for dumbbell molecules by EMD simulations are inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations. The possible limitation of the Green-Kubo and Einstein formulas with regard to the calculations of viscosity and thermal conductivity for molecular fluids such as the missing rotational degree of freedom is pointed out.
Keywords
Diffusion; Viscosity; Thermal conductivity; Dumbbell; Molecular dynamics simulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Tokumasu, T.; Ohara, T.; Kamijo, K. J. Chem. Phys. 2003, 118, 3677.   DOI   ScienceOn
2 Evans, D. J. Mol. Phys. 1977, 34, 317.   DOI   ScienceOn
3 Harp, G. D.; Berne, B. J. Phys. Rev. 1970, A2, 975.
4 Lee, S. H.; Park, D. K.; Kang, D. B. Bull. Korean Chem. Soc.2003, 24, 178.   DOI   ScienceOn
5 Barojas, J.; Levcsque, D.; Quentrec, B. Phys. Rev. 1973, A7, 1092.
6 Berne, B. J.; Harp, G. D. Advan. Chem. Phys. 1970, 17, 63.   DOI
7 Lee, S. H.; Cummings, P. T. Mol. Sim. 2001, 27, 139.   DOI   ScienceOn
8 Singer, K.; Taylor, A.; Singer, J. V. L. Mol. Phys. 1977, 33, 1757.   DOI   ScienceOn
9 Lee, S. H.; Kim, H. S.; Pak, H. J. Chem. Phys. 1992, 97, 6933.   DOI
10 Cheung, P. S. Y.; Powles, J. G. Mol. Phys. 1975, 30, 921.   DOI   ScienceOn
11 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford Univ. Press: Oxford, 1987; p 64.
12 Kubo, R. Rep. Prog. Phys. 1966, 29, 255.   DOI   ScienceOn
13 Rahman, A.; Stilllnger, F. H. J. Chem. Phys. 1971, 55, 3336.   DOI
14 Streett, W. B.; Tildesley, D. J. Proc. R. Soc. Lond. 1976, A348, 485.
15 Alder, B. J.; Wainwright, T. E. J. Chem. Phys. 1959, 31, 459.   DOI
16 Rahman, A. Phys. Rev. 1964, 136A, 405.
17 Evans, D. J.; Murad, S. Mol. Phys. 1977, 34, 327.   DOI   ScienceOn
18 Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. J. Chem. Phys.1990, 93, 7137.   DOI