• Title/Summary/Keyword: Rotational Torque

Search Result 285, Processing Time 0.026 seconds

Study on the Parameters to Decrease the Torque in ITR Part (ITR의 회전토크저감을 위한 조립인자에 대한 연구)

  • Choi Seogou;Kim In Ho;Lim Seong Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.26-31
    • /
    • 2005
  • ITR(Inne. Tie Rod) is one of the core parts in an automobile steering system. The front wheels are connected to the steering system, which are controlled by steering wheel through the ITR. Improvement of assembling ITR is needed f3r drivers' satisfaction. Therefore, the parameters influencing the rotational torque were studied and analyzed. The useful results can be obtained, and could be applied to manufacture ITR. Through these manufacturing technologies, high quality ITR have been manufactured with high productivity.

Factor Affecting Mandibular Rotational Troque Movements (하악의 비틀림회전운동에 영향을 미치는 요인)

  • 이유미;한경수;허문일
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.2
    • /
    • pp.143-155
    • /
    • 1998
  • This study was performed to investigate the factor that might affect mandibualr body rotation. For the study, 115 patients with temporomandibular disorders and 35 dental students without angy signs and symptoms of temporomandibular disorders were randomly selected as the patient group and the contreol group, respectively. Preferred chewing side, Angle' classification, lateral guidance pattern, and affected side were clinically recorded, and the amount of Mandibular body rotational torque movement was measured in wide opening and closure, in right and left excursion with vertical and lateral distance in frontal plane, right and left rotational angel in horizontal and in frontal plane. Masticatory muscle activity of anteriorocclusal contact pattern on maximal hard biting were also observed synchronously with BioEMG and T-Scan , respectively. The observed items were muscle activity of anterior temporalis and superficial masseter, and tooth contact status related to contact number, force, duration, and occlusal unbalance between right and left arch. The data collected were analyzed by SAS statistical program. The results of this study were as follows : 1. Mean value of vertical distance in frontal plane in wide opening and closure was more in control subjects than in patients, but there was no difference for rotational angle. In right excursion, rotational angles were greater in patient group than in control group. 2. Comparison among the subjects by preferred chewing side did not reveal any significant difference, but comparison among patients by affected side showed more rotational amount in bilaterally affected patients than in unilaterally affected patients. 3. Comparison among the subjects by Angle's classification or lateral guidance pattern revealed no difference. There was also no difference between preferred chewing side and contralateral side, and between affected side and contralateral side. 4. Positive correlation in madibular rotational torque movements were observed among vertical distance, total horizontal rotation angle, electromyographic activity of anterior temporalis, tooth contact number, and tooth contact force but total frontal rotation angle almost did not show any correlation with other variables except vertical distance.

  • PDF

Design of a Torque Application Device in Test Rig for a Wind Turbine Gearbox (풍력발전기용 증속기 시험 장비의 토크 인가 장치 설계)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Nam, Yong-Yun;Oh, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.507-515
    • /
    • 2015
  • This study was conducted to develop and verify a torque application device for use in a mechanical power-circulation test rig for 5.5 MW wind turbine gearboxes. The design and analysis of the torque application device was conducted. In addition, the torsional stiffness of the test rig was calculated using the rotational angle measurements for each of the components. The calculated stiffness of the test rig was $231.13kN{\cdot}m/rad$ for a clockwise torque application. The rated torque can be applied when the stiffness of the gearbox is greater than $1,064,400kN{\cdot}m/rad$ for a clockwise torque application. Because of the limited rotational angle of the test rig, the potential application of the rated torque is determined according to the torsional stiffness of the test gearbox.

Speed Sensorless Torque Monitoring of Induction Spindle Motor using Graphical Programming (그래픽 프로그래밍 기법을 이용한 주축용 유도전동기의 속도 센서리스 토크감시)

  • Park, Jin-U;Gwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.107-113
    • /
    • 2002
  • To monitor the torque of an induction motor using current, rotating speed has been measured and used to calculate the slip angular velocity. Additional sensor, however, can cause extra expense and trouble. In this paper, a new algorithm is proposed to monitor the torque of vector controlled induction motor without any speed measuring sensor. Only stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm and to monitor the torque of an induction motor in real time. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. From several experiments, the proposed method shows a good estimation of the motor torque under the normal rotational speed.

Effects of blade configuration and solidity on starting torque of Darrieus wind turbine

  • Roh, Sung-Cheoul;Kang, Seung-Hee
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.169-177
    • /
    • 2021
  • This study investigates the effects of blade configuration and solidity of Darrieus wind turbine on the starting torque characteristics. Generally, the configuration of Darrieus wind turbine is divided into Troposkien, parabola, Catenary, Sandia, modified-parabola and straight types. A numerical analysis has been carried out using Multiple Stream Tube (MST) method to investigate the effect of blade configuration and solidity of Darrieus wind turbine on the starting torque under the initial low range of rotational speed. The simulation results show that the starting torque of Darrieus wind turbine varies considerably depending on the blade configuration. The initial starting torque was larger with Troposkien, Parabola, Catenary, and Sandia configurations than with modified parabola or straight types. The increase in solidity with increasing number of blades raised the starting torque and improved the dynamic stability during the initial operational speed of Darrieus wind turbine. Additionally, these torque results represent basic data for fluid-structure interaction (FSI) simulation of the steady-dynamic operation of the turbine.

Control of Rotational Angular Speed using Magneto-rheological Fluid (자기유변유체를 이용한 회전 각속력 제어)

  • 신성철;정재성;김정훈;이종원
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 1999
  • A magneto-rheological(MR) fluid based rotary loading and braking device is developed. The loading and braking forces of the device are accurately adjustable by controlling the yield stress of MR fluid, so that the vibration control, the precision position control and the speed control of rotating machines equipped with the device can be achieved. As an engineering application, constant rotational speed regulation is conducted using the device manufactured in laboratory, introducing PI control action not only with varying torque due to gravitation, with initial angular speed, but also with constant external torque made by hand. To do this, first, mathematical model was obtained via experiments. And then, simulation was carried out, based on the experimentally identified model. Its result was confirmed through experiment. It is identified by simulation and experimental results that PI action leads to satisfactory control performance in both cases that varying torque due to gravitation, with initial angular speed, and constant external torque are applied.

  • PDF

Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting

  • Oh, Kwangseok;Yi, Kyong Su;Seo, Jaho;Kim, Yongrae;Lee, Geunho
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.40-49
    • /
    • 2017
  • This study presents an online estimation of an excavator's rotational inertia by using recursive least square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, online estimation of rotational inertia is essential for improving safety and automation of construction equipment such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, rotational inertia for swing motion may change significantly according to working posture and digging conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical working scenario was considered for reasonable performance evaluation. Three simulations were conducted by considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is effective for estimating varying rotational inertia of the excavator.

An Investigation on Nonlinear Characteristics of Aerodynamic Torque for Variable-Speed Variable-Pitch Wind Turbine (가변속도-가변피치 풍력터빈의 공기역학적 토크의 비선형 특성에 관한 고찰)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • Aerodynamic torque of wind turbine is highly nonlinear due to the nonlinear interactions between wind and blade. The aerodynamic nonlinearity is represented by nonlinear power and torque coefficients which are functions of wind speed, rotational speed of rotor, and pitch angle of blade. It is essential from the viewpoint of understanding and analysis of dynamic characteristics for wind turbine to linearize the aerodynamic torque and define aerodynamic nonlinear parameters as derivatives of aerodynamic torque with respect to the three parameters. In this paper, a linearization method of the aerodynamic torque from power coefficient is presented through differentiating it by the three parameters. And steady-state values of three aerodynamic nonlinear parameters according to wind speed are obtained and their nonlinear characteristics are investigated.

Influence of Torque Fluctuation on the Stability of a Rotating Disk (토크 하중의 변동이 회전원판의 안정성에 미치는 영향)

  • Shin, Eung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.110-116
    • /
    • 2015
  • This study investigates the whirling stability of a rotating shaft-disk system under parametric excitation using periodically varying torque. The equations of motion were derived using a lumped-mass model, and the Floquet method was employed to find the effects of torque fluctuation, internal and external damping, and rotational speed on whirling stability. Results indicated that the effect of torque fluctuation was considerable on the instability around resonance, but minimal on supercritical instability. Stability diagrams were sensitive to the parametric excitation frequency; critical torque decreased upon increasing excitation frequency, with faster response convergence or divergence. In addition, internal and external damping had a considerable effect on unstable regions, and reduced the effects of the parametric excitation frequency on critical torque and speed. Results obtained from the Floquet approach were in good agreement with those obtained by numerical integration, except for some cases with Floquet multipliers very close to unity.

Parameters Estimation and Torque Monitoring for the Induction Spindle Motor (주축용 유도전동기의 매개변수 추정과 토크 모니터링 시스템)

  • Kwon, Won-Tae;Kim, Gyu-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.238-244
    • /
    • 2004
  • To monitor the torque of an induction motor using current, the accurate identification of the motor parameters is very important. In this study, the motor parameters such as rotor resistance, stator and rotor leakage inductance, mutual inductance are estimated for torque monitoring and indirect vector control. Estimated parameters are used to monitor the torque of vector controlled induction motor without any speed measuring sensor. Stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. From the experiments, the proposed method shows a good estimation of the motor parameters and torque under the normal rotational speed.