• 제목/요약/키워드: Rotational Machinery

검색결과 249건 처리시간 0.031초

탈수소 열처리 공정에 의한 원심주조 메탈베어링의 제조 시스템 (Manufacturing System of Centrifugal Cast Metal Bearing by Dehydrogenation)

  • 김정훈;김충구;변재영;이은숙;양지웅;최원식
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.111-117
    • /
    • 2020
  • Centrifugal casting is suitable for producing hollow-products using centrifugal force. Bush type metal bearings are the key parts that facilitate the rotational movement of various machinery. Metal bearings produced by conventional centrifugal casting machines show rotational imbalance. Therefore, after injecting a large amount of material, the product's precision is secured in the secondary processing. Rotational imbalance is caused by the force acting on the rotary disc plate. In order to minimize rotational imbalance, NASTRAN was used for the optimal design and structural analysis. It was concluded that the rotating plate of the conventional centrifugal casting machine should be prevented from tilting. For this purpose, the location & thickness of the stiffeners were obtained through the optimum design. In the conventional centrifugal casting machine, both ends of the product are lower in temperature than the center part, so internal stress occurs. This solves this problem by inserting a heating coil into the rotating plate.

Study on Optimal Working Conditions for Picking Head of Self-Propelled Pepper Harvester by Factorial Test

  • Kang, Kyung-Sik;Park, Hoon-Sang;Park, Seung-Je;Kang, Young-Sun;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.12-20
    • /
    • 2016
  • Purpose: Pepper prices have risen continuously because of a decrease in cultivation area; therefore, mechanical harvesting systems for peppers should be developed to reduce cost, time, and labor during harvest. In this study, a screw type picking head for a self-propelled pepper harvester was developed, and the optimal working conditions were evaluated considering helix types, winding directions of helix, and rotational speeds of the helix. Methods: The screw type was selected for the picking head after analyzing previous studies, and the device consisted of helices and a feed chain mechanism for conveying pepper branches. A double helix and a triple helix were manufactured, and rotational speeds of 200, 300, and 400 rpm were tested. The device was controlled by a variable speed (VS) motor and an inverter. Both the forward and reverse directions were tested for the winding and rotating directions of the helix. An experiment crop (cultivar: Longgreenmat) was cultivated in a plastic greenhouse. The test results were analyzed using the SAS program with ANOVA to examine the relationship between each factor and the performance of the picking head. Results: The results of the double and triple helix tests in the reverse direction showed gross harvest efficiency levels of 60-95%, mechanical damage rates of 8-20%, and net marketable portion rates of 50-80%. The dividing ratio was highest at a rotational speed of 400 rpm. Gross harvest efficiency was influenced by the types of helix and rotational speed. Net marketable portion was influenced by rotational speed but not influenced by the type of helix. Mechanical damage was not influenced by the type of helix or rotational speed. Conclusions: Best gross harvest efficiency was obtained at a rotational speed of 400 rpm; however, operating the device at that speed resulted in vibration, which should be reduced.

Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting

  • Oh, Kwangseok;Yi, Kyong Su;Seo, Jaho;Kim, Yongrae;Lee, Geunho
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.40-49
    • /
    • 2017
  • This study presents an online estimation of an excavator's rotational inertia by using recursive least square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, online estimation of rotational inertia is essential for improving safety and automation of construction equipment such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, rotational inertia for swing motion may change significantly according to working posture and digging conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical working scenario was considered for reasonable performance evaluation. Three simulations were conducted by considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is effective for estimating varying rotational inertia of the excavator.

자성보상형 공기정압 저널베어링의 회전운동정밀도 시뮬레이션을 위한 실험적 고찰 (Experimental Investigation for Rotational Error Motion Simulation of Inherently Compensated Aerostatic Journal Bearing)

  • 심종엽;황주호;박천홍
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.135-140
    • /
    • 2015
  • It is an important thing for a designer to simulate and predict the performance of a spindle and a rotary table. In addition to the general performance such as static stiffness, the error motion performance information is beneficial to the designer in many cases. However for an aerostatic bearing the fluid film physical status should be calculated in order to simulate those performances and the calculation time is another obstacle for a simple performance simulation. In this paper the investigation on experiment and simulation is performed in order to find a more effective simulation method for the rotational error motion.

터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향 (The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer)

  • 손동기;구현철;차봉준;양수석;이대성
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.27-32
    • /
    • 2002
  • The turbopump inducer cavitation is very important for the success of a liquid rocket engine. In this study, the performance test and cavitation performance test were carried out at various rotational speeds with two inducers of different diameter. The rotational speed was varied by 4000, 6000, and 8000 rpm, and the size effect was tested for the normal inducer and twice-enlarged one. The hydraulic performance results showed that the similarity was satisfied over the entire test range of the present study. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for the large tip clearance. The cavitation performance test results showed that the breakdown NPSH increased as the flow coefficient, and was not affected by the rotational speed.

Counter-Rotating Type Pumping Unit (Impeller Speeds in Smart Control)

  • Kanemoto, Toshiaki;Komaki, Keiichi;Katayama, Masaaki;Fujimura, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.334-340
    • /
    • 2011
  • Turbo-pumps have weak points, such as the pumping operation is unstable on the positive slope of the head curve and/or the cavitation occurs at the low suction head. To improve simultaneously both weak points, the first author invented the unique pumping unit composed of the tandem impellers and the peculiar motor with the double rotational armatures. The front and the rear impellers are driven by the inner and the outer armatures of the motor, respectively. Both impeller speeds are automatically and smartly adjusted in response to the pumping discharge, while the rotational torques between both impellers/armatures are counter-balanced. Such speeds contribute to suppress successfully not only the unstable operation at the low discharge but also the cavitation at the high discharge, as verified with the axial flow type pumping unit in the previous paper. Continuously, this paper investigates experimentally the effects of the tandem impeller profiles on the pump performances and the rotational speeds against the discharge, using the impellers whose loads are low and/or high at the normal discharge. The worthy remarks are that (a) the unstable operation is suppressed as expected and the shut off power is scarcely large in the smart control, (b) the blade profile contributes to determine the discharge giving the maximum/minimum rotational speed where the reverse flow may incipiently appears at the front impeller inlet, (c) the tandem impeller profiles scarcely affect the rotational speeds, while the loads of the front and the rear impellers are same, but (d) the impeller with the low load must run faster and the impeller with the high load must run slower at the same discharge to take the same rotational torque, and (e) the reverse flow at the inlet and the swirling velocity component at the outlet of the front impeller with the high load require making the rotational speed of the rear impeller with low load fairly faster at the lower discharge.

주축의 회전정도 측정시스템의 개발 (Development of the Measuring System of the Rotational Accuracy of main Spindles)

  • 신영재;박종권;이후상
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.21-26
    • /
    • 1990
  • In order to satisfy the industrial requirements to measure the rotational error motion of main spindles and to find out the source of the error motion, some measuring systems were made. Their measuring principle are based on the 3-point roundness measurement. In these measuring systems, the measurements are processed by digital calculation technique and the form error and the rotational error motion of main spindles are spearated. In the present paper, the principle of 3-point metnod is introduced and some application examples are shown.

  • PDF

은닉 마르코프 모델을 이용한 속도 변화가 있는 회전 기계의 상태 진단 기법 (Condition Monitoring of Rotating Machine with a Change in Speed Using Hidden Markov Model)

  • 장미;이종민;황요하;조유종;송재복
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.413-421
    • /
    • 2012
  • In industry, various rotating machinery such as pumps, gas turbines, compressors, electric motors, generators are being used as an important facility. Due to the industrial development, they make high performance(high-speed, high-pressure). As a result, we need more intelligent and reliable machine condition diagnosis techniques. Diagnosis technique using hidden Markov-model is proposed for an accurate and predictable condition diagnosis of various rotating machines and also has overcame the speed limitation of time/frequency method by using compensation of the rotational speed of rotor. In addition, existing artificial intelligence method needs defect state data for fault detection. hidden Markov model can overcome this limitation by using normal state data alone to detect fault of rotational machinery. Vibration analysis of step-up gearbox for wind turbine was applied to the study to ensure the robustness of diagnostic performance about compensation of the rotational speed. To assure the performance of normal state alone method, hidden Markov model was applied to experimental torque measuring gearbox in this study.

회전관성의 순환최소자승 추정을 이용한 모델 예견 기반 굴삭기의 충돌회피 알고리즘 개발 (Model-Prediction-based Collision-Avoidance Algorithm for Excavators Using the RLS Estimation of Rotational Inertia)

  • 오광석;서자호;이근호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.59-67
    • /
    • 2016
  • This paper proposes a model-prediction-based collision-avoidance algorithm for excavators for which the recursive-least-squares (RLS) estimation of the excavator's rotational inertia is used. To estimate the rotational inertia of the excavator, the RLS estimation with multiple forgetting and two updating rules for the nominal parameter and the forgetting factors was conducted based on the excavator-swing dynamics. The average value of the estimated rotational inertia that is for the minimizing effects of the estimation error was computed using the recursive-average method with forgetting. Based on the swing dynamics, the computed average of the rotational inertia, the damping coefficient for braking, and the excavator's braking angle were predicted, and the predicted braking angle was compared with the detected-object angle for a safety evaluation. The safety level defined in this study consists of the three levels safe, warning, and emergency braking. The analytical rotational-inertia-based performance evaluation of the designed estimation algorithm was conducted using a typical working scenario. The results of the safety evaluation show that the predictive safety-evaluation algorithm of the proposed model can evaluate the safety level of the excavator during its operation.