• Title/Summary/Keyword: Rotational Circulation

Search Result 25, Processing Time 0.021 seconds

Characteristics of Typhoon Jelawat Observed by OSMI, TRMM/PR and QuikSCAT

  • Lim, Hyo-Suk;Choi, Gi-Hyuk;Kim, Han-Dol
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.293-303
    • /
    • 2000
  • The typhoon Jelawat, which was formed over the tropical Pacific ocean on August 1, 2000 and made a landfall over China on August 10, 2000, was observed by Korea Multi-purpose Satellite (KOMPSAT-1) Ocean Scanning Multispectral Imager (OSMI), Tropical Rainfall Measuring Mission (TRMM)/Precipitation Radar(PR) and Quick Scatterometer (QuikSCAT). In spite of discontinuous observation, important mesoscale features of typhoon depending on life cycle were detected prominently. It is possible to distinguish on the OSMI photograph between the eye-wall convection and the stratiform and other convective clouds near the center of typhoon Jelawat. The TRMM/PR observations show quite clearly the eye-wall convection, stratiform regions, and convective bands. Vertical cross section of rainfall in the genesis stage of typhoon Jelawat exhibits circular ring of intense convection surrounding the eye. The mature stage of typhoon Jelawat consists of a strong rotational circulation with clouds which are well organized about a center of low pressure. The OSMI, TRMM/PR and QuikSCAT measurements presented here agree qualitatively with each other and provide a wealth of information on the structure of typhoon Jelawat.

Effects of Earth's Atmosphere on Terrestrial Reference Frame : A Review (지구 대기가 지구 기준계에 미치는 영향 : 기존 모델 분석)

  • Na, Sung-Ho;Cho, Jungho
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.133-142
    • /
    • 2015
  • Displacement of the Earth's surface due to atmospheric loading has been recognized since a century years ago, and its accurate estimation is required in present day geodesy and surveying, particularly in space geodesy. Atmospheric load deformation in continental region can readily be calculated with the given atmospheric pressure field and the load Green's function, and, in near coastal area, approximate model is used for the calculation. The changes in the Earth's atmospheric circulation and the seasonal variation of atmospheric pressure on two hemispheres of the Earth are the each main causes of variation of the Earth's spin angular velocity and polar motion respectively. Wind and atmospheric pressure do the major role in other periodic and non-periodic perturbations of the positions in the Earth's reference frame and variations in the Earth's spin rotational state. In this reviewing study, the developments of related theories and models are summarized along with brief description of phenomena, and the geodetic perturbing effects of a hypothetical typhoon passing Korea are shown as an example. Finally related existing problems and further necessary studies are discussed in general.

The Effect of Spanwise Flow and Wing Rotation on the Aerodynamic Characteristics in Flapping Motion (날개 길이방향 유동과 날개 회전이 날개짓 운동의 공기역학적 특성에 미치는 효과)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Chung, Jin-Taek;Kim, Kwang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.753-760
    • /
    • 2007
  • In a 3-D flapping motion, the spanwise flow is generated while the wing is moved on the stroke plane. And at the end of each stroke, the rotational circulation is generated due to a wing rotation. In this study, to evaluate the effect of spanwise flow and wing rotation on the aerodynamic characteristics in 3-D flap 753ping motion, a 3-D flapping motion was compared with a 2-D translating motion. In each flapping motion, the aerodynamic forces were measured with respect to the angles of attack and Reynolds number. The aerodynamic forces generated by 2-D translating motion were higher than those generated by 3-D flapping motion. While the lift of 3-D flapping motion was increased until the angle of attack $60^{\circ}$ at mid-stroke, the lift generated by 2-D translating motion was decreased above the angle of attack 40° at mid stroke. Also, at the end of each stroke, the aerodynamic forces were increased rapidly due to wing rotation.

Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF) (고위도 하부 열권 바람의 소용돌이도와 발산 분석: 행성간 자기장(IMF)에 대한 의존도)

  • Kwak, Young-Sil;Lee, Jae-Jin;Ahn, Byung-Ho;Hwang, Jung-A;Kim, Khan-Hyuk;Cho, Kyung-Seok
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.405-414
    • /
    • 2008
  • To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM) is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ulti-mately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive $B_y$ shows positive and negative, respectively, at higher magnetic latitudes than $-70^{\circ}$. For negative $B_z$, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive $B_z$ have opposite sign. Negative IMF $B_z$ has a stronger effect on the vorticity than does positive $B_z$.

IONOSPHERE-THERMOSPHERE INTERACTIONS BASED ON NCAR-TIEGCM: THE INFLUENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF)-DEPENDENT IONOSPHERIC CONVECTION ON THE HIGH-LATITUDE LOWER THERMOSPHERIC WIND (NCAR-TIEGCM을 이용한 이온권-열권의 상호작용 연구: 행성간 자기장(IMF)에 의존적인 이온권 플라즈마대류의 고위도 하부 열권 바람에 대한 영향)

  • 곽영실;안병호;원영인
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.1
    • /
    • pp.11-28
    • /
    • 2004
  • To better understand how high-latitude electric fields influence thermospheric dynamics, winds in the high-latitude lower thermosphere are studied by using the Thermosphere-ionosphere Electrodynamics General Circulation Model developed by the National Conte. for Atmospheric Research (NCAR-TIEGCM). The model is run for the conditions of 1992-1993 southern summer. The association of the model results with the interplanetary magnetic field(IMF) is also examined to determine the influences of the IMF-dependent ionospheric convection on the winds. The wind patterns show good agreement with the WINDII observations, although the model wind speeds are generally weaker than the observations. It is confirmed that the influences of high-latitude ionospheric convection on summertime thermospheric winds are seen down to 105 km. The difference wind, the difference between the winds for IMF$\neq$O and IMF=0, during negative IMF $B_y$ shows a strong anticyclonic vortex while during positive IMF $B_y$ a strong cyclonic vortex down to 105 km. For positive IMF $B_z$ the difference winds are largely confined to the polar cap, while for negative IMF B, they extend down to subauroral latitudes. The IMF $B_z$ -dependent diurnal wind component is strongly correlated with the corresponding component of ionospheric convection velocity down to 108 km and is largely rotational. The influence of IMF by on the lower thermospheric summertime zonal-mean zonal wind is substantial at high latitudes, with maximum wind speeds being $60\;ms^-1$ at 130 km around $77^{\circ}$ magnetic latitude.