• Title/Summary/Keyword: Rotation-Invariant Distance

Search Result 34, Processing Time 0.019 seconds

Direct RTI Fingerprint Identification Based on GCMs and Gabor Features Around Core point

  • Cho, Sang-Hyun;Sung, Hyo-Kyung;Park, Jin-Geun;Park, Heung-Moon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.446-449
    • /
    • 2000
  • A direct RTI(Rotation and translation invariant) fingerprint identification is proposed using the GCMs(generalized complex moments) and Gabor filter-based features from the grey level fingerprint around core point. The core point is located as reference point for the translation invariant matching. And its symmetry axis is detected for the rotation invariant matching from its neighboring region centered at the core point. And then, fingerprint is divided into non-overlapping blocks with respect to the core point and, in contrast to minutiae-based method using various processing steps, features are directly extracted from the blocked grey level fingerprint using Gabor filter, which provides information contained in a particular orientation in the image. The Proposed fingerprint identification is based on the Euclidean distance of the corresponding Gabor features between the input and the template fingerprint. Experiments are conducted on 300 ${\times}$ 300 fingerprints obtained from the CMOS sensor with 500 dpi resolution, and the proposed method could obtain 97% identification rate.

  • PDF

ISAR Cross-Range Scaling for a Maneuvering Target (기동표적에 대한 ISAR Cross-Range Scaling)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1062-1068
    • /
    • 2014
  • In this paper, a novel approach estimating target's rotation velocity(RV) is proposed for inverse synthetic aperture radar(ISAR) cross-range scaling(CRS). Scale invariant feature transform(SIFT) is applied to two sequently generated ISAR images for extracting non-fluctuating scatterers. Considering the fact that the distance between target's rotation center(RC) and SIFT features is same, we can set a criterion for estimating RV. Then, the criterion is optimized through the proposed method based on particle swarm optimization(PSO) combined with exhaustive search method. Simulation results show that the proposed algorithm can precisely estimate RV of a scenario based maneuvering target without RC information. With the use of the estimated RV, ISAR image can be correctly re-scaled along the cross-range direction.

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.

2-D object recognition using distance transform on morphological skeleton (형태학적 골격에서의 거리 변환을 이용한 2차원 물체 인식)

  • 권준식;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.138-146
    • /
    • 1996
  • In this paper, w epropose a new mehtod to represent the shape and to recognize the object. The shape description and the matching is implemented by using the distance transform on the morphological skeleton. The employed distance transform is the chamfer (3,4) distance transform, because the chamfer distance transform (CDT) has an approximate value to the euclidean distance. The 2-D object can be represented by means of the distribution of the distance transform on the morphological skeleton, the number of skeletons, the sum of the CDT, and the other features are employed as the mtching parameters. The matching method has the invariant features (rotation, translation, and scaling), and then the method is used effectively for recognizing the differently-posed objects and/or marks of the different shape and size.

  • PDF

Aerial scene matching using linear features (선형특징을 사용한 항공영상의 정합)

  • 정재훈;박영태
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.689-692
    • /
    • 1998
  • Matching two images is an essential step for many computer vision applications. A new approach to the scale and rotation invariant scene matching is presented. A set of andidate parameters are hypthesized by mapping the angular difference and a new distance measure to the hough space and by detecting maximally consistent points. The proposed method is shown to be much faster than the conventinal one where the relaxation process is repeated until convergence, while providing robust matching performance, without a priori information on the geometrical transformation parameters.

  • PDF

Shape Segmentation by Watersheds (Watershed에 의한 형태분할)

  • 김태진;김주영;고광식
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.573-576
    • /
    • 1999
  • This paper presents a new shape segmentation algorithm. The procedure to achieve complete segmentation consists of two steps : the first step is mapping shape into two dimension by the using Distance Transform, the second step is partitioning the region by using the Watershed algorithm. As a application of the proposed algorithm, we perform the matching experiment for several objects by the use of segmented region. Simulation results demonstrate the efficiency of the proposed method, and the method has scale, rotation, and shift invariant properties.

  • PDF

A Shape Based Image Retrieval Method using Phase of ART (ART의 위상 정보를 이용한 형태기반 영상 검색 방법)

  • Lee, Jong-Min;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.26-36
    • /
    • 2012
  • Since shape of an object in an image carries important information in contents based image retrieval (CBIR), many shape description methods have been proposed to retrieve images using shape information. Among the existing shape based image retrieval methods, the method which employs invariant Zernike moment desciptor (IZMD) showed better performance compared to other methods which employ traditional Zernike moments descriptor in CBIR. In this paper, we propose a new image retrieval method which applies invariant angular radial transform descriptor (IARTD) to obtain higher performance than the method which employs IZMD in CBIR. IARTD is a rotationally invariant feature which consists of magnitudes and alligned phases of angular radial transform coefficients. To produce rotationally invariant phase coefficients, a phase correction scheme is performed while extracting the IARTD. The distance between two IARTDs is defined by combining the differences of the magnitudes and the aligned phases. Through the experiment using MPEG-7 shape dataset, the average bull's eye performance (BEP) of the proposed method is 0.5806 while the average BEPs of the exsiting methods which employ IZMD and traditional ART are 0.4234 and 0.3574, respectively.

Implementation of Improved Shape Descriptor based on Size Function (Size Function에 기반한 개선된 모양 표기자 구현)

  • 임헌선;안광일;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.3
    • /
    • pp.215-221
    • /
    • 2001
  • In this paper, we propose a algorithm that apply different weight-sampling values according to the directions of the contour to reduce errors that can arise in extracting the feature of an contoured object. Especially, it 8is designed to have invariant property under the circumstances like the rotation, transition and scaling. The output matrix of feature set is made through the size function of the proposed algorithm, and the euclidean distance between the output matrix and that of the original image is calculated. Experimental result shows that the proposed algorithm reduces the euclidean distance between the original image and the changed image-by 57% in rotation and by 91% in scaling.

  • PDF

Recognition and positioning of occuluded objects using polygon segments (다각형 세그먼트를 이용한 겹쳐진 물체의 인식 및 위치 추정)

  • 정종면;문영식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.73-82
    • /
    • 1996
  • In this paper, an efficient algorithm for recognizing and positioning occuluded objects in a two-dimensional plane is presented. Model objects and unknown input image are approximated by polygonal boundaries, which are compactly represented by shape functions of the polygons. The input image is partitioned into measningful segments whose end points are at the locations of possible occlusion - i.e. at concave vertices. Each segment is matched against known model objects by calculating a matching measure, which is defined as the minimum euclidean distance between the shape functions. An O(mm(n+m) algorithm for computing the measure is presentd, where n and m are the number of veritces for a model and an unknown object, respectively. Match results from aprtial segments are combined based on mutual compatibility, then are verified using distance transformation and translation vector to produce the final recognition. The proposed algorithm is invariant under translation and rotation of objects, which has been shown by experimental results.

  • PDF

Direction-of-Arrival Estimation in Broadband Signal Processing : Rotation of Signal Subspace Approach (광대역 신호 처리에서의 도래각 추정 : Rotation of Signal Subspaces 방법)

  • Kim, Young-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.166-175
    • /
    • 1989
  • In this paper, we present a method which is based on the concept of the rotation of subspaces. This method is highly related to the angle (or distance) between subspaces arising in many applications. An effective procedures is first derived for finding the optimal transformation matrix which rotates one subspace into another as closely as possible in the least squares sense , and then this algorithm is applied to the solution to general direction-of-arrival estimation problem of multiple broadband plane waves which may be a mixture of incoherent, partially coherent or coherent. In this typical application, the rotation of signal subspaces (ROSS) algorithm is effectively developed to achieve the high performance in the active systems for the case in which the noise field remains invariant with the measurement of the array spectral density matrix (or data matrix). It is not uncommon to observe this situation in sonar systems. The advantage of this techniques is not to require the preliminary processing and spatial prefiltering which is used in Wang-Kaveh's CSS focusing method. Furthermore, the array's geometry is not restricted. Simulation results are presented to illustrate the high performance achieved with this new approach relative to that obtained with Wang-Kaveh's CSS focusing method for incoherent sources and forward-backward spatial smoothed MUSIC for coherent sources including the signal eigenvector method (SEM).

  • PDF