• Title/Summary/Keyword: Rotation performance

Search Result 1,252, Processing Time 0.027 seconds

Removal of Gaseous Styrene using a Pilot-Scale Rotating Drum Biotrickling Filter (Pilot-scale 회전식 드럼 바이오필터를 이용한 Styrene 제거)

  • Hwang, Jae-Woong;Lim, Ji-Sung;Chang, Seok-Jin;Lee, Eun-Yul;Choi, Cha-Yong;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.188-193
    • /
    • 2006
  • A new type of biofilter, a rotating drum biotrickling filter(RDBF), was developed and operated for the removal of styrene from industrial waste gas. The porous polyurethane foam sheet was used as a packing materials for the RDBF and a pure culture of Gram-positive bacterium Brevibacillus sp. SP1 was used as an inoculum. The reactor showed a short start-up period of 18 days, during which uniform biofilms were developed on the packing. During a steady operation at an incoming styrene concentration of $200ppm_v$ and a retention time of 0.5 min, a high and stable removal of styrene over 95% was observed. The maximum elimination capacity was estimated to be $125g/m^3{\cdot}hr$. The outstanding performance was attributed to an efficient gas-liquid mass transfer and the appropriate supply of nutrient solution to the biofilm microorganisms on the packing by the rotation of the drum.

3-Port Circulator for X-Band Radar (X-Band 레이더를 위한 3-포트 서큘레이터)

  • Yoon, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.355-362
    • /
    • 2015
  • In this study, we have fabricated 9.385[GHz] circulator that is composed of WR112 waveguide and Ferrite for X-band radar. For designing Ferrite, B/R mode(Below Resonance mode) was used and calculated the condition of 120 degree rotation of the electric field in Ferrite and calculated internal DC magnetic field and external DC magnetic field. Also, dielectric materials of the same shape with Ferrite was filled between two Ferrite for improving the performance of the circulator, including impedance matching, bandwidth, quality factor, insertion loss. To obtain optimum shape of the Ferrite and dielectric material, we used CST MWS. Simulation result of the circulator is that 1.02 : 1 VSWR, -40dB isolation, 0.2dB insertion loss and measurement result is that 1.03 : 1, -38dB, 1.2dB at 9.385[GHz]. We can get good agreement at isolation and VSWR, but insertion loss was 1 dB great than simulation result.

Statistical Precoder Design for Spatial Multiplexing Systems in Correlated MIMO Fading Channels (높은 안테나 상관도를 갖는 다중입출력 공간 다중화 시스템을 위한 통계적 프리코딩 기법)

  • Moon, Sung-Hyun;Kim, Jin-Sung;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.223-231
    • /
    • 2011
  • It has been shown that the performance of multiple-input multiple-output (MIMO) spatial multiplexing systems is significantly degraded when spatial correlation exists between transmit and receive antenna pairs. In this paper, we investigate designs of a new statistical precoder for spatial multiplexing systems with maximum likelihood (ML) receiver which requires only correlation statistics at the transmitter. Two kinds of closed-form solution precoders based on rotation and power allocation are proposed by means of maximizing the minimum E tlidean distance of joint symbol constellations. In addition, we extend our results to linear receivers for correlated channels. We provide a method which yields the same profits from the proposed precoders based on a simple zero-forcing (ZF) receiver. The simulation shows that 2dB and 8dB gains are achieved for ML and ZF systems with two transmit antennas, respectively, compared to the conventional systems.

The Study for the CMP Automation wish Nova Measurement system (NOVA System을 이용한 CMP Automation에 관한 연구)

  • 김상용;정헌상;박민우;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.176-180
    • /
    • 2001
  • There are several factors causing re-work in CMP process such as improper polish time calculation by operator, removal rate decline of the polisher, unstable in-suit pad conditioning, slurry supply module problem and wafer carrier rotation inconsistency. And conclusively those fundimental reason for the re-work rate increasement is mainly from the cycle time delay between wafer polish and post measurement. Therefore, Wafer thickness measurement in wet condition could be able to remove those improper process conditions which may happen during the process in comparison with the conventional dried wafer measurement system and it can be able to reduce the CMP process cycle time. CMP scrap reduction by overpolish, re-work rate reduction, thickness control efficiency also can be easily achieved. CMP Equipment manufacturer also trying to develop integrated system which has multi-head & platen, cleaner, pre & post thickness measure and even control the polish time from the calculated removal rate of each polishing head by software. CMP re-work problem such as over & under polish by target thickness may result in the cycle time delay. By reducing those inefficient factors during the process and establish of the automatic process control, CLC system need to be adopted to maximize the process performance. Wafer to Wafer Polish Time Feed Back Control by measuring the wafer right after the polish shorten the polish time calculation for the next wafer and it lead to the perfect Post CMP target thickness control capability. By Monitoring all of the processed the wafer, CMP process will also be stabilize itself.

  • PDF

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.

Design and Implementation of Depolarized FOG based on Digital Signal Processing (All DSP 기반의 비편광 FOG 설계 및 제작)

  • Yoon, Yeong-Gyoo;Kim, Jae-Hyung;Lee, Sang-Hyuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1776-1782
    • /
    • 2010
  • The interferometric fiber optic gyroscopes (FOGs) are well known as sensors of rotation, which are based on Sagnac effect, and have been under development for a number of years to meet a wide range of performance requirements. This paper describes the development of open-loop FOG and digital signal processing techniques implemented on FPGA. Our primary goal was to obtain intermediate accuracy (pointing grade) with a good bias stability (0.22deg) and scale factor stability, extremely low angle random walk (0.07deg) and significant cost savings by using a single mode fiber. A secondary goal is to design all digital FOG signal processing algorithms with which the SNR at the digital demodulator output is enhanced substantially due to processing gain. The Cascaded integrator bomb(CIC) type of decimation filter only requires adders and shift registers, low cost processors which has low computing power still can used in this all digital FOG processor.

A Study on the Profile Design of Sweeping Auger for the Combined Grain Drying and Storage System (일체형 곡물 건조/저장 시스템 개발을 위한 나선형 배출기구의 가변 단면 형상 설계에 관한 연구)

  • Choi, Kab-Yong;Oh, Tae-Il;Shin, Sung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1473-1479
    • /
    • 2009
  • This study have been carried out as a part of R&D project to develop a low cost high efficiency combined grain drying & storage system. The design of sweeping auger must meet the various conditions : capacity and dimensions of silo, discharging capacity of auger, operation conditions of auger such as revolution and rotation and density of grains and even the first-in & first-out of grains in the system. Through the experimental observations with the apparatus which enables the direct observation of discharging behavior of grains, the limitations of the performance of existing straight type auger was observed. Generalized mathematical model for the profile of new variable section sweeping auger was obtained, which ensures the uniform descending of grains and also meets various operating conditions. The experimental results with a prototype sweeping auger showed that the mathematical model for the variable section sweeping auger was quitely correct.

Study on Analysis of Operating Characteristics of Motor Block While KTX is Moving at Neutral Section of Kyung-Bu High Speed Line (경부고속선 절연구간에서 KTX 운행중 모터블럭의 동작특성 분석)

  • Choi, Chang Hyun;Lho, Young Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1523-1527
    • /
    • 2015
  • Traction power is supplied by three-phase alternating current of 154 kV power grid and electric trains are operated on single phase feeding system. It becomes important to use all the three phases equally and convert them into two-phase electric power (90 degree phase rotation) for traction supply. This is achieved by special transformer from the adjacent traction substation which is separated by a neutral section. Neutral section locations are in front of the substation and between the two substations. The first stage of the Seoul-Busan high-speed railway, design curve radius is larger than 7,000 m and the greatest slope is 25‰. The railway track conditions are evaluated as good enough to install a neutral section at the first stage, but a few factors of coasting operation of the train should be considered at the second stage of Seoul-Busan high-speed railway. The neutral section was located at Kim-cheon substation, which made some neutral section problems produced by the operating train, and the neutral section was moved about 1.5 km to the south toward Dong Dae-gu station due to the track operation condition. Some of the trains which stopped at the existing Kim-cheon Gu-mi station produced another motor block failure after moving the neutral section. In this paper, power quality, system performance and track condition, etc. are suggested to solve the problems.

Stability Analysis of Floating Ring Bearing Supported Turbocharger (플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

Digital Photogrammetry Camera Boresight Calibration Using Ground Control Points (지상기준점을 이용한 디지털카메라 Boresight Calibration)

  • Lee, Yong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.293-298
    • /
    • 2014
  • Recently, the direct georeferencing has been becoming a common method in the aerial photogrammetry. As this direct georeferencing method using converged sensor of the digital photogrammetry camera and GPS(Global Positioning System)/INS(Inertial navaigation System), more rapid and accurate aerial photogrammetry has improved following advanced performance in photogrammetry. Since the accuracy of EO parameters from the direct georeferencing is determined by GPS/INS accuracy, it is significant to calculate the exact attitude information using values of INS rotations. For following calculations, the misalignment, such as INS rotation and the gap of GPS/INS, has to be decided. Because the number of ground control points are used for tirangulation and boresight calibration, those results should be different according to array and location of ground control points. In the study, those location and array of ground control points were tested to be used boresight calibration. As a result, there is no significant change of misalignment and exterior orienation parameters in the case when ground control points were at all course. On the contrarily, the difference has been shown in the case of no ground control point at course.