• Title/Summary/Keyword: Rotation mechanism

Search Result 304, Processing Time 0.03 seconds

An Analytic Study on the Valve Rotation Behavior of an Internal Combustion Engine (내연기관 밸브회전 거동에 관한 해석적 연구)

  • Kim, Do-Joong;Youn, Jae-Won;Kim, Jin-Woung;Song, Jin-Ook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2006
  • Rotation of intake and exhaust valves are very closely related to the long term durability of automotive engines. If the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. A principle of valve rotation mechanism was presumed based on some findings from experiments, and computer programs were developed to simulate the valve rotation phenomena. In this study we investigated the valve rotation mechanism by using the computer simulation models.

Development of Design Program for Arm-Type Lift of Truck (화물차 차량부착용 암형 리프트 설계 프로그램의 개발)

  • 박상신;안유민;김영진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-252
    • /
    • 1997
  • In this paper, arm-type lifting mechanism which is attached under the frame of truck is analyzed. The three types of motions which are divided into rotation, pure lifting and automatic tilting motions are analyzed kinematically. These motions are visualized by computer graphics using Visual Basic. This program will be used for designer to demonstrate the arm-type lifting mechanism before making real machines. Also this program can change design parameter interactively.

  • PDF

Analysis of a Rotation Stage with Cartwheel-type Flexure Hinges Driven by a Stack-type Piezoelectric Element (십자형 플렉셔 힌지를 갖는 압전소자 구동형 회전 스테이지의 해석)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Min-Young;Ko, Kuk-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.88-94
    • /
    • 2007
  • A flexure hinge-based compliant stage driven by stack-type piezoelectric elements has high precision motion but small operational range due to the characteristics of the piezoelectric element. Since the common flexure hinges can be broken by excessive deflection when the displacement is amplified by a high amplification ratio, a flexure hinge mechanism for large deflection is required. A cartwheel-type flexure hinge has an advantage of larger deflection compared with the common flexure hinges. This study presents a rotation stage with cartwheel-type flexure hinges driven by a stack-type piezoelectric element. The characteristics and the performance of the rotation stage are described by the terms of principal resonance frequency, amplification ratio of rotational displacement, maximum rotational displacement and block moment, in which the terms are analyzed by geometric parameters of the rotation stage. The analyzed results will be used as the guideline of the design of the rotation stage.

Efficient Mechanism for receiver and sink node in Wireless Sensor Networks (무선 센서 네트워크에서 수신 및 싱크 노드를 위한 효율적인 데이터 전송 방법)

  • Jeon, JunHeon
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.3
    • /
    • pp.65-70
    • /
    • 2020
  • In wireless sensor networks, data packets are send to the sink node. So traffic increases near the sink node. This causes delay and collision. To solve this problem, the proposed mechanism used half rotation antenna. By using a half rotation antenna, the delay of data packets can be reduced. Also we propose a method to efficiently use the energy of the node using BRN(backup receiver node) and increase the lifetime of the entire networks. Our numerical analysis and simulation results show that our mechanism outperforms RI-MAC protocol in terms of energy consumption and transmission delay.

A Study on the Contour Design in the Hinge Mechanism for a Folder of a Mobile Phone (휴대폰 폴더용 힌지기구의 윤곽 설계에 관한 연구)

  • Park, Jong-Keun;Lee, Soo-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.86-94
    • /
    • 2008
  • A total stroke of an opening or closing motion of a hinge mechanism in a folder-type mobile phone is composed of two portions. In the first portion, human fingers act a force to open or close the folder. In this portion, the rotating folder compresses the coil spring installed in the mechanism. In the last portion, this compressed coil spring generates a torque to rotate the folder. The main merit of this study is that we have designed a hinge mechanism to be operated by a uniform torque in the first portion of the total stroke. The uniform torque means that it is constant along the folder's swing angle. This mechanism will give softer feeling to human fingers. A pair of contours in the mechanism plays an important role. It transforms rotation into translation in the first portion; on the other hand, it transforms translation into rotation in the last portion. In this study, we have developed an algorithm to obtain the pair of contour curves. We divided the total contour curves into finite sub-intervals. Assuming that the curves in every sub-interval are parabolas, we have obtained the coefficients of them by solving systems of nonlinear equations recursively.

Design of Spindle Motor-chuck System for Ultra High Resolution (나노급 정밀 구동을 위한 스핀들 모터-척 시스템 설계)

  • Kim, Kyung-Ho;Kim, Ha-Yong;Shin, Bu-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • The STW(servo track writing) system which is the process of writing servo signals on disks before assembling in drives uses the spindle motor-chuck mechanism to realize low cost because the spindle motor-chuck mechanism has merit which can simultaneously write multi-disk by piling up disks in hub. Therefore, when the spindle motor-chuck mechanism of horizontal type operates in high rotation speed it is necessary to reduce the effect of RRO(repeatable run-out) and NRRO(non-repeatable run-out) to achieve the high precision accuracy of nano-meter level during the STW process. In this paper, we analyzed that the slip in assembly surfaces can be caused by the mechanical tolerance and clamping force in hub-chuck mechanism and can affect NRRO performance. We designed springs for centering and clamping considering centrifugal force by the rotation speed and assembly condition. The experimental result showed NRRO performance improves about 30 % than case of weak clamping force. The result shows that the optimal design of the spindle motor-chuck mechanism can effectively reduce the effect of NRRO and RRO in STW process.

Design of Robot Rotation Arm with Parallel Motion in End Effector (말단 장치의 평면 유지가 가능한 로봇 회전 암의 설계)

  • Lee, Jong-Shin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.359-366
    • /
    • 2010
  • This study proposes the design method for the robot rotation arm which the end effector that is connected in end of the arm keeps parallel motion even though the robot arm rotates. So far, most robot arm rotates together the end effector when the arm rotates. For this, this study proposes the mechanism that the arm is linked to each 4 parallel link so that rotation is possible by 4 pins, and the rotation arm connects 2 joints of diagonal line direction to a link in each 4 joint for rotation, and designs so that can change length of the link. For verification of design, this study targeted that develop the rotation arm for medical examination that use in ophthalmology. It is important that a medical robot offers comport to patient and design compactly so that medical examination and treatment space may can be defined enough. It is designed so that all drive elements may be positioned on interior of the arm and optimization of design for main parts was carried out in this study for this. The robot arm which is developed in this study manufactured to use by medical phoropter arm, and got good result by an experiment. The robot rotation arm which is proposed in this study is judged to contribute very effectively in case use of a medical robot arm for medical examination and treatment, also the robot arm which the end effector that is connected in the end of the arm needs to keep parallel motion. And, the robot arm which is developed in this study made an application as license.

Theoretical Derivation of the Optimum Rotation Speed of a Desiccant Rotor (이론적 방법에 의한 제습로터 최적 회전속도의 결정)

  • Lee, Dae-Young;Song, Gwi-Eun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.575-582
    • /
    • 2009
  • The optimum rotation speed of a desiccant rotor is studied theoretically based on a theoretical solution to the heat and mass transfer processes in the desiccant rotor. A simple correlation equation for the optimum rotation speed is derived to show the effects of various parameters including the thermo-physical properties, the geometric dimension, and the operating condition of the desiccant rotor. The theoretical result is compared with existing experimental data to validate the linearization and simplification included in the solution procedure. Based on the theoretical solution, the effects of major parameters on the optimum rotation speed are studied and the fundamental mechanism of the influences is investigated.

Stress Induced-Domain Formation Mechanism in LiNbO3 Single Crystals (LiNbO3단결정에서 내부응력에 의한 Domain형성기구)

  • 최종건;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 1989
  • Periodic layered domain structures in doped LiNbO3 crystals grown by Czochralski method were obtained by thermal fluctuation and crystal rotation with inhomogeneous radial temprature distribution. The stressinduced domain formation mechanism model was suggested and discussed.

  • PDF

A Study on Rotating Arc Using Hollow Shaft Motor (중공축 모터를 이용한 회전아크에 관한 연구)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.49-54
    • /
    • 2000
  • High speed rotating arc process, forming a flat bead surface with shallow penetration depth, can be applied to the automatic seam tracking, because the amplitude of current waveform increases at high rotation speed. Two high speed arc rotation mechanisms have been developed in Japan and Germany b rotating the electrode nozzle using an external motor, which are used prevalently for narrow gap and conventional seam welding. In this study, a new rotation mechanism was developed by using a hallow shaft motor designed to be installed in the electrode nozzle. By rotating the welding arc, the amplitude of current waveform increases remarkably since the self-regulation of arc is not fully performed. Experiments show that the arc sensor with high-speed rotation arc has improved its responsiveness and sensitivity.

  • PDF