• Title/Summary/Keyword: Rotation direction

Search Result 701, Processing Time 0.029 seconds

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

Numerical Analysis on Aerodynamic Performances and Characteristics of Quad Tilt Rotor during Forward Flight (전진 비행하는 쿼드 틸트 로터의 공력성능 및 특징에 대한 수치적 연구)

  • Lee, Seonggi;Oh, Sejong;Choi, Seongwook;Lee, Yunggyo;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.197-209
    • /
    • 2018
  • In this study, numerical analyses on Quad Tilt Rotor(QTR) are carried out to investigate the interference effect of components and effect of operating condition during forward flight. Actuator Surface Method(ASM) which is implemented in an open source CFD code, OpenFOAM, is used to calculate the flow field around QTR with high computational efficiency. The lift of the front and rear wing is found to increase or decrease depending on the rotation direction of the rotor. At the rear wing, the interference effects of the front and rear rotor appear as a combined manner. Performance change due to the phase difference is found to be insignificant. For both rotors, the locally higher thrust is generated by the blockage effect of the wing. The interference effect of wake from the front nacelle contributes to higher local thrust for the rear rotor compared to the front rotor. And it is observed that the amplitude of thrust oscillation can decrease depending on the phase difference between the rotors. Aerodynamic performances of both rotors and the entire aircraft were compared and analyzed for various operating conditions.

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Fatigue Durability Evaluation of Refraction Expansion Joints (굴절형 신축이음장치의 피로내구성 평가)

  • Na, Jun-Su;Lee, Ta;Han, Eui-Seok;Sung, Won-Kyu;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.10-15
    • /
    • 2017
  • The refraction expansion joints have been newly developed by complementing the problems of shock, noise, replaceability, displacement in the direction perpendicular to bridge, vertical difference, which are problems of existing expansion joints. The Refraction expansion joints are characterized by continuous surfaces with small impact and low noise. The behavior of the Refraction expansion joints performs the bridge expansion behavior by rotation of the link. In the rotational behavior of the link, the bolt is the central axis of the behavior. Therefore, it can be said that the durability of the bolt is very important. However, the theoretical and experimental verification of the bolt durability of the Refraction expansion joint is lacking. In this paper, to verify the fatigue durability of the bolt, test specimens with a 300 mm Refraction expansion joint were fabricated. A strain gauge dedicated to the bolt was installed inside the manufactured test specimen bolt. The test method was applied in accordance with KS F 4425. The fatigue durability of the bolts assembled inside the diaphragm expansion joint was confirmed by the repeated fatigue test of 2,000,000 cycles.

STUDY ON MONITORING UNIT EFFICIENCY OF FLATTENING-FILTER FREE PHOTON BEAM IN ASSOCIATION WITH TUMOR SIZE AND LOCATION

  • Kim, Dae Il;Kim, Jung-In;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.194-201
    • /
    • 2013
  • To investigate monitoring unit (MU) efficiency and plan quality of volumetric modulated arc therapy (VMAT) using flattening-filter free (FFF) photon beam in association with target size and location. A virtual patient was generated in Eclipse$^{TM}$ (ver. A10, Varian Medical Systems, Palo Alto, USA) treatment planning system. The length of major and minor axis in axial view was 50 cm and 30 cm, respectively. Cylindrical-shaped targets were generated inside that patient at the center (symmetric target) and in the periphery (asymmetric target, 7.5 cm away from the center of the patient to the right direction) of the virtual patient. The longitudinal length was 10 cm and the diameters were 2, 5, 10 and 15 cm. Total 8 targets were generated. RapidArc$^{TM}$ plans using TrueBeam STx$^{TM}$ were generated for each target. Two full arcs were used and the axis of rotation of the gantry was set to be at the center of the virtual patient. Total MU, homogeneity index (HI), target mean dose, the value of gradient measure and body mean dose were calculated. In the case of symmetric targets, averaged total MU of FFF plan was 23% and 19% higher than that of flattening filter (FF) plan when using 6 MV and 10 MV photons, respectively. The difference of HI, target mean dose, gradient measure and body mean dose between FF and FFF was less than 0.04, 2.6%, 0.1 cm and 2.2%, respectively. For the asymmetric targets, total MU of FFF plan was 21% and 32% was higher than that of FF when using 6 MV and 10 MV photons, respectively. The homogeneity of the target was always worse when using FFF than using FF. The maximum difference of HI was 0.22. The target mean dose of FFF was 3.2% and 4.1% higher than that of FF for the 6 MV and 10 MV, respectively. The difference of gradient measure was less than 0.1 cm. The body mean dose was higher when using FFF than FF about 4.2% and 2.8% for the 6 MV and 10 MV, respectively. No significant differences between VMAT plans of FFF beam and FF beam were observed in terms of quality of treatment plan. The HI was higher when using FFF 10 MV photons for the asymmetric targets. The MU was increased noticeably when using FFF photon beams.

The Realization of Intensity-modulated Radiation Therapy Using the Liquid Shielding Material (액체 차폐물을 이용한 강도변조방사선치료의 구현)

  • 오영기;김진기;신교철;김기환;윤상모;김재철;박인규
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.155-160
    • /
    • 2001
  • We developed a new method that the radiation field shape and intensity could be controlled automatically with a insertion of the liquid shielding material box having a rotatable model imitated the 3-dimensional target volume within. The molded box filled with the mercury was mounted to the tray. A acrylic model imitated the 3-dimensional target volume was fixed into the center of the interior of the box. Although the gentry rotate, the acrylic model can be returned to the original direction of the target due to the action of the gravity. The film measurements at the gantry rotation angle 0$^{\circ}$, 45$^{\circ}$, and 90$^{\circ}$, respectively were shown that the radiation intensities were modulated properly and the field shapes were conformed to the target. We verified the dose distribution for our method with a cylindrical acrylic phantom inserted a film within. In the case of the 8-field irradiation, the 80% isodose line was enclosed the target shape properly. This results show the realization of a new intensity-modulated radiation therapy(IMRT).

  • PDF

The Growth of $MgO:LiNbO_3$ Single Crystal by Czochralski Method and its Density Measurement (Czochralski법에 의한 $MgO:LiNbO_3$단결정 성장과 밀도 측정)

  • Kim, Il-Won;Park, Bong-Chan;Kim, Gap-Jin
    • Korean Journal of Crystallography
    • /
    • v.4 no.2
    • /
    • pp.74-85
    • /
    • 1993
  • Single crystals of LiNbO3 have found extensive application in electro-optic and nonlinear optic devices. However, laser-induced refartive index inhomogeneities, which have been labeled opical damage impose limits on device optical damage in LiNbO3 is imporved if more than 4.5 rml% MgO is added to the melt The laser damage thrueshold increased as much as 100 times better then that of undoped crystals. The MgO doped cystal has thus been urterlsiv81y studied since then. In the study, Mgo:LiNbOs(MLA) single crystals dopsd with 0, 2.5, 5.0, 7.5, 10.0 mol% MgO have been grown by the czocrualski technique. The metls were prepared in the platinum crluible and 15∼20mm diameter crystals were grown with a length of 20∼30mm in a resitance heater. The growth rate was 2.5mm/hr, the rotation speed 15rpn. Before sawing MLN single crystals were annealed for 24 hours under atmosphere at a temperature of 1080℃. After sawing, we have found an annual ring cross section of MNA crystals only in the direction of perpendicilar to the c-axis. Nonuniform dispusion of MgO was pointed out that the cuties of the state of oxide were strongly affected by oxygen partial pressure in.

  • PDF

Numerical simulation optimization for solution growth of silicon carbide (SiC 용액 성장을 위한 수치 시뮬레이션의 최적화)

  • Kim, Young-Gon;Choi, Su-Hun;Lee, Chae-Yung;Choi, Jeung-Min;Park, Mi-Seon;Jang, Yeon-Suk;Jeong, Seong-Min;Lee, Myung-Hyun;Kim, Younghee;Seo, Won-Seon;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.130-134
    • /
    • 2017
  • In this study, numerical simulation was performed to focus on optimized process condition for obtaining a long-term growth and high quality SiC crystal. It could be optimized by considering the change of fluid and a carbon flow in the Si melt added with 40 % Cr. The Crystal Growth Simulator ($CGSim^{TM}$, STR Group Ltd.) was used as a numerical simulation. It was confirmed that many parameters such as temperature, rotation speed of seed crystal and crucible, and seed position during the crystal growth step had a strong influence on the speed and direction of solution flow for uniform temperature gradient and stable crystal growth. The optimized process condition for the solution growth of SiC crystal was successfully exhibited by adjusting various process parameters in the numerical simulation, which would be helpful for real crystal growth.

A study on treatment effects of Class III cases by second molar extraction (제 2 대구치 발거에 의한 III급 부정교합자의 치료효과에 관한 연구)

  • Lee, Sung-Hee;Park, Young-Guk;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.34 no.2 s.103
    • /
    • pp.109-119
    • /
    • 2004
  • This study aimed at investigating the skeletal, dentoalveolar, and soft tissue changes of Class III malocclusion cases treated by second molar extraction. The lateral cephalograms of 15 subjects with moderate Class III malocclusion by average ANB $-1.4^{\circ}\;and\;IMPA\;85^{\circ}$ were traced and the computerized superimposition of average craniofacial change was made. The data was gathered and statistically analyzed. The results were as follows: 1 Lower anterior facial height/anterior facial height increased by 0.6%(P<0.01), mandibular plane increased by $1.5^{\circ}$(P<0.05). 2. There was a slightly downward & backward rotation of the mandible. 3. Lower first molar tipped distally by 4.nm(P<0.001), lower anterior teeth lingually tipped by $3.2^{\circ}$(P<0.05). 4. Retracted lower lip improved facial profile. This study may suggest that second molar extraction could be effective for a moderate Class III malocclusion to make distalization of the lower first molar easier and avoid severe lingual tipping of the lower incisor, if the lower third molar has a normal shape, good direction of eruption and adequate time for lower second molar extraction