• Title/Summary/Keyword: Rotation accuracy

Search Result 448, Processing Time 0.027 seconds

Influence of Plate Design on the Accuracy of Tibial Alignment after Center of Rotation of Angulation-Based Leveling Osteotomy in Toy-Breed Dogs

  • Han, Jae-Hong;Lee, Hae-Beom;Jeong, Jae-Min;Jeon, Young-Jin;Roh, Yoon-Ho
    • Journal of Veterinary Clinics
    • /
    • v.39 no.3
    • /
    • pp.100-106
    • /
    • 2022
  • The center of rotation of angulation-based leveling osteotomy (CBLO) has been introduced for the stabilization of cranial cruciate ligament rupture (CCLR) in small-breed dogs. This technique can be applied to the tibia without damaging its tuberosity. Although different designs of CBLO plates are available, tibial plateau leveling osteotomy (TPLO) plates have been still used for stabilization during CBLO. To the best of our knowledge, no studies have reported the effects of TPLO plates on the postoperative limb alignment after CBLO. Therefore, the present study (January 2020 to February 2021) aimed to compare the postoperative outcomes (postoperative tibial plateau angle [TPA] and tibial alignment) in patients receiving CBLO and TPLO plates during CBLO. Paired stifle joints (n = 16) were obtained from eight toy-breed cadaver dogs (mean weight, 4.4 kg) that underwent CBLO. The joints were randomly assigned to receive the CBLO (CBLO group) or TPLO plates (TPLO group). Pre-and postoperative radiographs were obtained, and the dissected tibiae were evaluated. The following postoperative parameters were compared to evaluate the surgical outcome: TPA, osteotomy location, mechanical medial proximal tibia angle, inter-segment gap, and tibial plateau translation. No significant differences were found in the postoperative alignment between the two groups. Therefore, TPLO plates may be considered as a viable alternative in toy-breed dogs undergoing CBLO.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

Optimal Shoulder Position for Visualization of SLAP Ⅱ lesion on MR-Arthrography (SLAP Ⅱ 병변의 진단을 위한 관절 조영 자기 공명 영상에서 견관절 위치에 따른 비교)

  • Lee Young-Soo;Shin Dong-Bae;Park Soo-Jin;Kim Jin-Yong;Kim Hee-Sang;Ha Du-Hae
    • Clinics in Shoulder and Elbow
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • Purpose : The purpose of this study was to evaluate the efficacy of oblique coronal MR images, oblique axial images of neutral, internal rotation and external rotation positions in the diagnosis of SLAP Ⅱ lesion. Materials and Methods: MR arthrography of the glenohumeral joint was evaluated retrospectively in 16 patients(16 shoulders) who underwent arthroscopic surgery(mean age; 38 years old, Male; 13, Female; 3). Oblique coronal fat-suppressed Tl-weighted spin echo images were performed with each shoulder in the neutral position of the arm and oblique axial images were performed in neutral, internal and external rotations of the arm respectively. The preoperative findings of MR were classified as definite tear, possible tear and no tear. Arthroscopic findings were correlated with MR findings of several different position of the arm. Results: Arthroscopic surgery revealed 8 SLAP Ⅱ lesion, 2 SLAP I lesion, and 6 normal superior labrum respectively. The accuracy of diagnosis in the 8 SLAP Ⅱ lesion were high on oblique axial image in external rotation which were interpreted as 8 definite tear, to compare with oblique axial images in neutral position which were interpreted as 4 definite tear, 3 possible tear, 1 no tear. The 6 normal superior labrum lesion were interpreted as no tear in all three position. The 2 SLAP I lesion were interpreted as 1 definite tear, 1 no tear on oblique axial image in neutral position and 1 definite tear, 1 possible tear on oblique axial image in external rotation. Conclusion: This study showed that axial MR images in external rotation of the arm combined with oblique coronal images have proved to be effective to detect SLAP Ⅱ lesion, and should be considered in imaging protocol for MR arthrography of the SLAP Ⅱ lesion.

  • PDF

Mirror Manipulator with Independent Adjustability Using an External Spherical Joint (외부 구형관절을 이용한 조정 독립형 거울조정기)

  • 길계환;김창균;나승유;이재민;윤화식;윤무현;백성기
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.145-154
    • /
    • 2001
  • A new type of modular mirror manipulator with independent adjustability was developed for the EPU6 beamline under construction at the Pohang Accelerator Laboratory. The mirror manipulator was designed so that the angular displacements of roll and pitch rotations do not introduce translational displacements and are independent with each other by positioning the mirror center to the center of a newly devised spherical joint. Manipulating its roll and pitch micrometers, the rotation angles of a dummy mirror were measured at an accuracy of 5 $\mu$rad using a gravity-referenced inclinometer. While the designed angular resolution was 3.937 $\mu$rad/$\mu\textrm{m}$, measured angular resolutions were 3.94 $\mu$rad/$\mu\textrm{m}$ for roll rotation and 3.85 $\mu$rad/$\mu\textrm{m}$ for pitch rotation. The effect of roll rotation on pitch angles was measured to be -3.18% and the effect of pitch rotation on roll angles was measured to be -5.21%. As the mirror manipulator was designed with emphases on independent adjustability and standardization, it results in eases of manufacturing, installation and adjustment as well as reductions of development period and design cost of mirror manipulators for various types of mirrors.

  • PDF

Gravity Removal and Vector Rotation Algorithm for Step counting using a 3-axis MEMS accelerometer (3축 MEMS 가속도 센서를 이용한 걸음 수 측정을 위한 중력 제거 및 백터 전환 알고리즘)

  • Kim, Seung-Young;Kwon, Gu-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose Gravity Removal and Vector Rotation algorithm for counting steps of wearable device, and we evaluated the proposed GRVR algorithm with Micro-Electro-Mechanical (MEMS) 3-axis accelerometer equipped in low-power wearable device while the device is mounted on various positions of a walking or running person. By applying low-pass filter, the gravity elements are canceled from acceleration on each axis of yaw, pitch and roll. In addition to DC-bias removal and the low-pass filtering, the proposed GRVR calculates acceleration only on the yaw-axis while a person is walking or running thus we count the step even if the wearable device's axis are rotated during walking or running. The experimental result shows 99.4% accuracies for the cases where the wearable device is mounted in the middle and on the right of the belt, and 91.1% accuracy which is more accurate than 83% of commercial 3-axis pedometer when worn on wrist for the case of axis-rotation.

Evaluation of Accuracy About 2D vs 3D Real-Time Position Management System Based on Couch Rotation when non-Coplanar Respiratory Gated Radiation Therapy (비동일평면 호흡동조방사선치료 시 테이블 회전에 따른 2D vs 3D Real-Time Position Management 시스템의 정확성 평가)

  • Kwon, Kyung-Tae;Kim, Jung-Soo;Sim, Hyun-Sun;Min, Jung-Whan;Son, Soon-Yong;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.601-606
    • /
    • 2016
  • Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by $10^{\circ}$ in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by $10^{\circ}$ in the clockwise direction and compared with the baseline at the reference $0^{\circ}$. The reference amplitude was 1.173 to 1.165, the couch angle at $20^{\circ}$ was 1.132, and the couch angle at $1.0^{\circ}$ was 1.083. At $350^{\circ}$ counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at $340^{\circ}$ was 1.124, and the couch angle at $330^{\circ}$ was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change.

Development of New Prototype of Mechanical Quality Assurance for Clinical Linear Accelerator (의료용 선형가속기의 기계적 점검을 위한 새로운 정도관리 프로토콜의 개발)

  • 윤형근;신교철;김기환;오영기;김진기;정동혁;김정기;조문준;박인규
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.109-113
    • /
    • 2002
  • In recent years, the radiotherapy equipment has become much more sophisticated, and with the complication comes an increased set of quality assurance (QA) responsibilities. Today's computer controlled linear accelerator requiring QA of not only the radiation integrity, but also the mechanical accuracy of the linear accelerator. The existing QA sheets are adequate for acceptance testing and commissioning but those sheets are somewhat descriptive form for routine QA. establishing the QA sheets for a facility are more efficient if the sheets could estimate the long-term stability for the result of QA. We are going to develope new prototype of mechanical QA sheet to visualize and to verify long-term stability of mechanical QA for clinical linear accelerator. The items included in mechanical QA sheet were 1) gantry rotation, 2) collimator rotation, 3) couch rotation, 4) optical distance indicator (ODI), and 5) laser alignment. We compared new prototype sheet with conventional sheet for several hospitals in Korea for those items. The QA acceptance criteria in this study mainly followed published recommendations. The contents of test for mechanical QA are the following. Confirm that the digital and/or mechanical gantry angle readouts are correct. Verify that digital and/or mechanical readouts of collimator angle agree with the true angle, as determined with the protractor. Measure the light field using a graph paper and compare with the digital readouts. Confirm digital readout accuracy. Verify that the sagittal laser, the left and right lasers, and the ceiling laser intersect at the isocenter. In the design of new QA sheet, we emphasized the representation of the long-term stability of mechanical QA by using Excel program. By using the new prototype QA sheet, we simplified and visualized the mechanical QA process, and could estimate the long-term stability of mechanical error of linear accelerator.

  • PDF

Evaluation of VMAT Dose Accuracy According to Couch Rotation in Stereotactic Radiation Surgery of Metastatic Brain Cancer (전 이성 뇌 암의 정위 방사선수술에서 Couch 회전에 따른 VMAT의 선량 정확성 평가)

  • Na, Gwui Geum;Park, Byoung Suk;Cha, Woo Jung;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.117-125
    • /
    • 2021
  • Purpose: To purpose of this study is to find the correlation of the Set-up error according to the couch rotation and suggest additional margin setting for the GTV. Target and Method: Each scenario treatment plan was created by making the frequency of non-coplanar beams different among all beams. The set-up error value was measured by using the Exact System and the dose accuracy was evaluated by creating a re-treatment plan. Results: When the couch was rotated by 30°, 45°, 60°, and 90°, the mean of the X-axis values was measured to be 0.29 mm, 0.26 mm, 0.51 mm, and 0.08 mm, respectively. The mean of the Y-axis values was measured to be 0.75 mm, 0.5mm, 0.35 mm, and 0.29 mm, respectively. The mean of the Z-axis values was measured to be 0.5 mm, 0.28 mm, 0.22 mm, and 0.1 mm, respectively. There were dose reductions of 0.1%, 3.1%, 1.9% in D99 for 1-NC VMAT, 2-NC VMAT, and 3-NC VMAT, respectively. Conclusion: When treating with 50% or more of non-coplanar beams among total beams, image verification is required. And it is considered to make the treatment plan by adding a 1.5 mm margin to the GTV.

Evaluation on the Accuracy of the PPS in the Proton Therapy System, Which Uses the Self Made QA Phantom (자체 제작한 QA Phantom을 이용한 양성자 PPS (Patient Positioning System)의 정확성 평가)

  • Lee, Ji-Eun;Kim, Jae-Won;Kang, Dong-Yoon;Choi, Jae-Hyeok;Yeom, Du-Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Purpose: The process of the proton treatment is done by comparing the DRR and DIPS anatomic structure to find the correction factor and use the PPS to use this factor in the treatment. For the accuracy of the patient set up, the PPS uses a 6 axis system to move. Therefore, there needs to be an evaluation for the accuracy between the PPS moving materialization and DIPS correction factor. In order to do this, we will use a self made PPS QA Phantom to measure the accuracy of the PPS. Materials and Methods: We set up a PPS QA Phantom at the center to which a lead marker is attached, which will act instead of the patient anatomic structure. We will use random values to create the 6 axis motions and move the PPS QA Phantom. Then we attain a DIPS image and compare with the DRR image in order to evaluate the accuracy of the correction factor. Results: The average correction factor, after moving the PPS QA Phantom's X, Y, Z axis coordinates together from 1~5 cm, 1 cm at a time, and coming back to the center, are 0.04 cm, 0.026 cm, 0.022 cm, $0.22^{\circ}$, $0.24^{\circ}$, $0^{\circ}$ on the PPS 6 axis. The average correction rate when moving the 6way movement coordinates all from 1 to 2 were 0.06 cm, 0.01 cm, 0.02 cm, $0.1^{\circ}$, $0.3^{\circ}$, $0^{\circ}$ when moved 1 and 0.02 cm, 0.04 cm, 0.01 cm, $0.3^{\circ}$, $0.5^{\circ}$, $0^{\circ}$ when moved 2. Conclusion: After evaluating the correction rates when they come back to the center, we could tell that the Lateral, Longitudinal, Vertical were all in the acceptable scope of 0.5 cm and Rotation, Pitch, Roll were all in the acceptable scope of $1^{\circ}$. Still, for a more accurate proton therapy treatment, we must try to further enhance the image of the DIPS matching system, and exercise regular QA on the equipment to reduce the current rate of mechanical errors.

  • PDF

Evaluation of Real-time Measurement Liver Tumor's Movement and $Synchrony^{TM}$ System's Accuracy of Radiosurgery using a Robot CyberKnife (로봇사이버나이프를 이용한 간 종양의 실시간 움직임 측정과 방사선수술 시 호흡추적장치의 정확성 평가)

  • Kim, Gha-Jung;Shim, Su-Jung;Kim, Jeong-Ho;Min, Chul-Kee;Chung, Weon-Kuu
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.263-270
    • /
    • 2008
  • Purpose: This study aimed to quantitatively measure the movement of tumors in real-time and evaluate the treatment accuracy, during the treatment of a liver tumor patient, who underwent radiosurgery with a Synchrony Respiratory motion tracking system of a robot CyberKnife. Materials and Methods: The study subjects included 24 liver tumor patients who underwent CyberKnife treatment, which included 64 times of treatment with the Synchrony Respiratory motion tracking system ($Synchrony^{TM}$). The treatment involved inserting 4 to 6 acupuncture needles into the vicinity of the liver tumor in all the patients using ultrasonography as a guide. A treatment plan was set up using the CT images for treatment planning uses. The position of the acupuncture needle was identified for every treatment time by Digitally Reconstructed Radiography (DRR) prepared at the time of treatment planning and X-ray images photographed in real-time. Subsequent results were stored through a Motion Tracking System (MTS) using the Mtsmain.log treatment file. In this way, movement of the tumor was measured. Besides, the accuracy of radiosurgery using CyberKnife was evaluated by the correlation errors between the real-time positions of the acupuncture needles and the predicted coordinates. Results: The maximum and the average translational movement of the liver tumor were measured 23.5 mm and $13.9{\pm}5.5\;mm$, respectively from the superior to the inferior direction, 3.9 mm and $1.9{\pm}0.9mm$, respectively from left to right, and 8.3 mm and $4.9{\pm}1.9\;mm$, respectively from the anterior to the posterior direction. The maximum and the average rotational movement of the liver tumor were measured to be $3.3^{\circ}$ and $2.6{\pm}1.3^{\circ}$, respectively for X (Left-Right) axis rotation, $4.8^{\circ}$ and $2.3{\pm}1.0^{\circ}$, respectively for Y (Crania-Caudal) axis rotation, $3.9^{\circ}$ and $2.8{\pm}1.1^{\circ}$, respectively for Z (Anterior-Posterior) axis rotation. In addition, the average correlation error, which represents the treatment's accuracy was $1.1{\pm}0.7\;mm$. Conclusion: In this study real-time movement of a liver tumor during the radiosurgery could be verified quantitatively and the accuracy of the radiosurgery with the Synchrony Respiratory motion tracking system of robot could be evaluated. On this basis, the decision of treatment volume in radiosurgery or conventional radiotherapy and useful information on the movement of liver tumor are supposed to be provided.