• Title/Summary/Keyword: Rotation Matrix

Search Result 223, Processing Time 0.032 seconds

The Optimization Method of Symmetrical Building Plan Using Point Group Theory (포인트그룹 이론을 이용한 대칭적 건물 평면형태의 최적대안 결정방안)

  • 진경일
    • Korean Institute of Interior Design Journal
    • /
    • no.38
    • /
    • pp.75-82
    • /
    • 2003
  • The symmetry is general geometric design principal in contemporary architecture shape. But, Symmetry sometimes easily causes unreasonable design. In some reason, two of symmetric units in the apartment, one side of unit have very reasonable plan and arrangement but opposite side unit nay not. For example, if the kitchen on right unit had right-handed arrangement, the symmetrical other would have left-handed kitchen arrangement. In addition to this, if each house unit has the same plan but different direction, each unit has different usage or affects the residents' life pattern. Nevertheless, Architects use only one unit plan to design public housing development by using symmetric operator (mirror, proper rotation, inversion center) at their option. This study suggests that using group theory and mathematical matrix rather than designer's discretion can solve this symmetry problem clearly. And, this study analysis the merits and demerits between each symmetrical pair of unit plan shapes by using mathematical point group theory and matrix.

Numerical Investigation of Flowing Process for Regenerative Beat Exchanger of a Gas Turbine Engine (가스터빈 리제너레이토 내부유동에 관한 수치해석적 연구)

  • Kim Soo Yong;Kovalevsky Valeri P;Goldenberg Victor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.109-121
    • /
    • 2004
  • A distributed nonlinear mathematical model for investigation of regenerative heat exchangers of both a continuous and periodic operation is described in the paper. The non-iterative numerical integration scheme for conjugate unsteady heat exchange problem of one dimensional flows and two dimensional matrix wall conductivity is developed. Case study of a regenerative heat exchanger with a rotary ceramic matrix is presented. The range of optimum rotation rates of the regenerator providing the greatest calorific efficiency is determined.

Applications of Ar Gas Cluster Ion Beam Sputtering to Ta2O5 thin films on SiO2/Si (100)

  • Park, Chanae;Chae, HongChol;Kang, Hee Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.119-119
    • /
    • 2015
  • Ion beam sputtering has been widely used in Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES) for depth profile or surface cleaning. However, mainly due to severe matrix effects such as surface composition change from its original composition and damage of the surface generated by ion beam bombardment, conventional sputtering skills using mono-atomic primary ions with energy ranging from a few hundred to a thousand volts are not sufficient for the practical surface analysis of next-generation organic/inorganic device materials characterization. Therefore, minimization of the surface matrix effects caused by the ion beam sputtering is one of the key factors in surface analysis. In this work, the electronic structure of a $Ta_2O_5$ thin film on $SiO_2/Si$ (100) after Ar Gas Cluster Ion Beam (GCIB) sputtering was investigated using X-ray photoemission spectroscopy and compared with those obtained via mono-atomic Ar ion beam sputtering. The Ar ion sputtering had a great deal of influence on the electronic structure of the oxide thin film. Ar GCIB sputtering without sample rotation also affected the electronic structure of the oxide thin film. However, Ar GCIB sputtering during sample rotation did not exhibit any significant transition of the electronic structure of the $Ta_2O_5$ thin films. Our results showed that Ar GCIB can be useful for potential applications of oxide materials with sample rotation.

  • PDF

Rotation-Invariant Texture Classification Using Gabor Wavelet (Gabor 웨이블릿을 이용한 회전 변화에 무관한 질감 분류 기법)

  • Kim, Won-Hee;Yin, Qingbo;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1125-1134
    • /
    • 2007
  • In this paper, we propose a new approach for rotation invariant texture classification based on Gabor wavelet. Conventional methods have the low correct classification rate in large texture database. In our proposed method, we define two feature groups which are the global feature vector and the local feature matrix. The feature groups are output of Gabor wavelet filtering. By using the feature groups, we defined an improved discriminant and obtained high classification rates of large texture database in the experiments. From spectrum symmetry of texture images, the number of test times were reduced nearly 50%. Consequently, the correct classification rate is improved with $2.3%{\sim}15.6%$ values in 112 Brodatz texture class, which may vary according to comparison methods.

  • PDF

Automation of 3 Dimensional Beam Modeling based on Finite Element Formulation for Elastic Boom of a Floating Crane (해상 크레인 탄성 붐 적용을 위한 3D 빔(beam) 유한 요소 정식화 및 자동화)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul;Ham, Seung-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.6
    • /
    • pp.411-417
    • /
    • 2010
  • In this paper, the boom of a floating crane is modeled as a 3-dimensional elastic beam in order to analyze the dynamic response of the crane and its cargo. The boom is divided into more than two elements based on finite element formulation, and deformation of each element is expressed in terms of shape matrix and nodal coordinates. The equations of motion for the elastic boom consist of a mass matrix, a stiffness matrix, and a quadratic velocity vector that contains the gyroscopic and Coriolis forces. The size and complicity of the matrices increase in proportion with the number of elements. Therefore, it is not possible to derive the equations of motion explicitly for different number of elements. To overcome this difficulty, matrices for one 3-dimensional element are expressed with elementary sub-matrices. In particular, the quadratic velocity vector is derived as a product of a shape matrix and a 3-dimensional rotation matrix. By using the derived matrices, the equations of motion for the multi-element boom are automatically constructed. To verify the implementation of the elastic boom based on finite element formulation, we simulated a simple vibration of the elastic boom and compared the average deformation with the analytic solution. Finally, heave motion of the floating crane and surge motion of the cargo are presented as application examples of the elastic boom.

Design and Implementation of Frontal-View Algorithm for Smartphone Gyroscopes (스마트폰 자이로센서를 이용한 Frontal-View 변환 알고리즘 설계 및 구현)

  • Cho, Dae-Kyun;Park, Seok-Cheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.199-206
    • /
    • 2012
  • Attempt to use as a marker of natural objects directly in the real world, but there is a way to use the accelerometer of the smartphone, to convert the Frontal-View virtual, because it asks only the pitch of the camera, from the side there is a drawback that can not be converted to images. The proposed algorithm, to obtain the rotation matrix of axis 3 pitch, roll, yaw, we set the reference point of the yaw of the target image. Then, to compensate for the rotation matrix to determine Myon'inji any floor, wall, the ceiling of the target image. Finally, to obtain the homography matrix for obtaining the Frontal-View to account for the difference between the gyro sensor coordinate system and image coordinate system, so we can get the Frontal-View from the captured images through the projection transformation was designed. Was tested to convert Frontal-View the picture was taken in an environment smartphone environment surrounding floor, walls and ceiling in order to evaluate the conversion program Frontal-View has been implemented, in this paper, design and The conversion algorithm implementation, it was confirmed that to convert a regular basis Frontal-View footage taken from multiple angles.

Enhancement of Magneto-Optical Kerr Effect in Annealed Granular Films of Co-Au and $Co-AlO_x$

  • Abe, Masanori;Takeda, Eishi;Kitamoto, Yoshitaka;Shirasaki, Fumio;Todoroki, Norikazu;Gorodetzky, Gad;Ohnuma, Shigehiro;Masumoto, Tasuku;Inoue, Mitsuteru
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.100-102
    • /
    • 2000
  • Co fine particles were dispersed in Au metal and $AlO_x$ amorphous matrices by vacuum evaporation and rf-sputtering, respectively, thus forming granular composite films having chemical compositions of $Co_{0.59}-Au_{0.41}$ and $Co_{0.52}/(AlO_x$)_{0.48}$. The films were annealed at 200~$500^{\circ}C$ to increase the size of the Co particles, from 30$\AA$ to 180$\AA$ in the Au matrix and 40$\AA$ to 180$\AA$ in the $AlO_x$ matrix, as revealed by X-ray diffraction analysis. The Co metal in as-deposited films have saturation magnetization equivalent to that of bulk Co, which is unchanged by the annealing, showing that the Co metal is not oxidized by the annealing. Magneto-optical Kerr rotation measured at $\lambda$=400-900nm for the $Co_{0.59}-Au_{0.41}$ film as deposited is larger than that calculated for the composition. The rotation increases as the film is annealed at $200^{\circ}C$ and $300^{\circ}C$, approaching to that of bulk Co. The Kerr rotation for the $Co_{0.52}-(AlO_x)_{0.48}$ film as deposited is smaller than that calculated for the composition based on Bruggeman effective medium theory. However, the rotation increases much, exceeding the rotation of the bulk Co as annealed at $300^{\circ}C$ and $400^{\circ}C$. As a possible origin of the marked magneto-optical enhancement a weak localization of light in granular structure is suggested.

  • PDF

Representation of ambiguous word in Latent Semantic Analysis (LSA모형에서 다의어 의미의 표상)

  • 이태헌;김청택
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.2
    • /
    • pp.23-31
    • /
    • 2004
  • Latent Semantic Analysis (LSA Landauer & Dumais, 1997) is a technique to represent the meanings of words using co-occurrence information of words appearing in he same context, which is usually a sentence or a document. In LSA, a word is represented as a point in multidimensional space where each axis represents a context, and a word's meaning is determined by its frequency in each context. The space is reduced by singular value decomposition (SVD). The present study elaborates upon LSA for use of representation of ambiguous words. The proposed LSA applies rotation of axes in the document space which makes possible to interpret the meaning of un. A simulation study was conducted to illustrate the performance of LSA in representation of ambiguous words. In the simulation, first, the texts which contain an ambiguous word were extracted and LSA with rotation was performed. By comparing loading matrix, we categorized the texts according to meanings. The first meaning of an ambiguous wold was represented by LSA with the matrix excluding the vectors for the other meaning. The other meanings were also represented in the same way. The simulation showed that this way of representation of an ambiguous word can identify the meanings of the word. This result suggest that LSA with axis rotation can be applied to representation of ambiguous words. We discussed that the use of rotation makes it possible to represent multiple meanings of ambiguous words, and this technique can be applied in the area of web searching.

  • PDF

A Study on the Synthesis of 6-Pole Dual-Mode Singly Terminated Elliptic Function Filter (6차 단일종단 이중모드 타원응답 필터 합성에 관한 연구)

  • 염인복;이주섭;엄만석;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.506-512
    • /
    • 2003
  • An output multiplexer of manifold type is widely used in a recent satellite transponder f3r its mass and volume reduction. For correct operation, the filter of such a multiplexer must be singly terminated. In this paper, a simple synthesis method of a 6-pole dual-mode singly terminated filter is described. From the transfer function of the filter, network parameters such as in/output terminations and coupling matrix are obtained with the aid of orthogonal projection and plane rotation. The rotation order, pivot, and rotation angle of the plane rotation process are given for easy filter synthesis. Two different-structure filters are taken into consideration and the network parameters of each filter have been obtained from the same transfer function. The method described in this paper can be applied to the other degree singly terminated filter.

Geometric Interpretation of the Unitary Jones Matrix and Its Vectorial Representation (유니타리 존즈행렬의 기하학적 해석과 벡터표현)

  • 노봉규;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 1994
  • We derive a set of formuale which show one-to-one correspondence between the the unitary Jones matrices of transparent anisotropic media and the rotational transformations on the Poincare sphere. By using the formuale one can determine the vectorial representation of the rotational transformation on the Poincare sphere which specifies the direction of the axis and the angle of the rotation in terms of the three parameters specific to the corresponding unitary Jones matrix, and conversely the the three parameters of the uniatry Jones matrix in terms of the vectorial representation of the corresponding rotational transformation on the Poincare sphere. To understand the polarization transmission characteristics of an optical system consisting of transparent linear anisotropic media, start with the Jones calculus to get the unitary Jones matrix for the whole system and then convert it to a rotational transformation on the Poincare sphere, from which we can intuitively understand the effect of the optical system on the polarization state of the light passing through the system.

  • PDF