• Title/Summary/Keyword: Rotating-types

Search Result 199, Processing Time 0.025 seconds

Relationship between Electrical Resistivity and Hydraulic Resistance Capacity measured by Rotating Cylinder Test (회전식 수리저항성능 실험기를 이용한 지반의 수리저항특성과 전기비저항 특성의 상관관계)

  • Kim, Young Sang;Jeong, Shin Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Recently, constructions of coastal structure including wind turbine structure have increased at southwest shore of Korea. There is a big difference of tide which rage from 3.0 m to 8.0 m at south and wet shore of Korea, respectively. In such ocean circumstance, large scour may occur due to multi-directional tidal current and transverse stress of the wind. therefore scour surrounding wind turbine structure can make system unsafe due to unexpected system vibration. In this study, hydraulic resistance capacity, i.e., critical velocity and critical shear stress, was evaluated by RCT. Uni-directional and bi-directional hydraulic resistance capacities of the samples which were consolidated by different preconsolidation pressures were correlated with soil resistivities of same samples. According to the correlation, it is possible to estimate hydraulic resistance capacity from electrical resistivity of soil. Through the updating the correlation for various soil types, it is expected that the hydraulic resistance capacity of whole construction site will be simply determined from the electrical resistivity.

Numerical study on fluid characteristics due to disc shape in a novel mechanical ballast water treatment system (신개념 기계식 선박평형수 처리장치의 디스크 형상에 따른 유동특성에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Kim, Young-Chul;Choi, Kung-Kwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • As the recent regulation of Internaional Maritime Organization (IMO) is enforced, the advanced technology of Ballast water treatment system (BWTS) is needed to meet its requirements. Until now, there are two kinds of the BWTS technologies such as physical methods (Membrane and UV) and chemical methods (Chlorin and Ozone). However, these conventional methods have some limitations of auxiliary power, low productivity, residual treatment and etc. In order to overcome these problems, this paper introduces the new kind of BWTS based on mechanical principle and investigates the effect of rotating disc shapes on flow characteristics between rotating and stationary discs by computational fluid dynamics (CFD). Planar and Step types can make the local cavitation generated along radius, and Circular type can increase the intensity of shear stress.

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF

Comparison of SPECT Images with $^{99m}Tc$ Collimators ($^{99m}Tc$용 콜리메타의 성능과 SPECT 화상의 영향)

  • Lee, Man-Koo;Lee, Jeong-Ok;Park, Soung-Ock
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.35-40
    • /
    • 2001
  • Performance of SPECT imaging systems which use a rotating gamma camera, are affected by characteristics of the detector-collimator assembly, the data acquisition method, and the filter used in imaging reconstruction. The purpose of this study Is to examine image qualifies of SPECT with different types of low energy collimators. The SPECT imaging system in this study is a digital gamma camera system GCA-901A(Toshiba) and a data processing unit Scintipac-700(Shimadzu). The four types of collimators compared are UHR(ultra high resolution), LEHR(low energy high resolution), LEGP(low energy general purpose), and I-123 PAR(Parallel), with 0.27, 0.66, 1.00, and 2.06 relative sensitivity, respectively. In this case of the same collimators, the spatial resolutions measured in the slice plane showed a slight difference in the FWHM values(mean values of UHR, LEHR, LEGP, and I-123 PAR were 11.3 mm, 13.6 mm, 15.8 mm, and 20.4 mm, respectively) between the center and the circumference of the field of view, in the radial direction, but a large difference in the tangential direction, with lower FWHM values(values of UHR, LEHR, LEGP, and I-123 PAR were 8.4 mm, 8.7 mm, 9.3 mm, and 10.8 mm at 12 cm from the center, respectively). In comparison of SPECT images with the four types of collimators, except for the I-123 PAR collimator, image qualities of UHR, LEHR, and LEGP collimators showed only a slight difference. From the point of for, it is expected that the LEGP collimator would be suitable for SPECT imaging with $^{99m}Tc$.

  • PDF

Correlation Analysis Between Chemical Degradation Characteristics of Grease and Degradation Characteristics of Bearing Through Durability Test (내구시험을 통한 베어링의 열화 특성과 그리스의 화학적 열화 특성 연관성 분석)

  • Kang, Bo-Sik;Lee, Choong-Sung;Ryu, Kyung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1239-1246
    • /
    • 2022
  • This paper introduces the effect of grease on the degradation characteristics of bearings used as key components of packaging equipment and automation systems. Bearings parts are installed to fix and support the rotating body of the system, and performance degradation of the bearings has a great effect on the life of the system too. When bearings are used in various devices and systems, the grease is applied to reduce friction and improve fatigue life. Determining the type of lubricant (grease) is important because it has a great influence on the operating environment and lifespan and ensures long lifespan of systems and facilities. However, studies that simultaneously compared and analyzed the change in mechanical degradation characteristics and the comparison of chemical degradation characteristics according to grease types under actual operating conditions are insufficient. In this paper, three types of small harmonic drive, high-load reducer, and low-load reducer grease used in power transmission joint modules are experimentally selected and finally injected into ball bearings with a load (19,500N) to improve bearing durability. Degradation characteristics were tested by attaching to test equipment. At this time, after the durability test under the same load conditions, the mechanical degradation characteristics, that is temperature, vibration according to the three greases types. In addition, the chemical degradation characteristics of the corresponding grease was compared to present the results of mutual correlation analysis.

Analysis of the Composting Effect on Cow Manure by Aeration and Comparison of Characteristics of Cow Manure Pellet Composts According to Granulation Processing Method (송풍유무에 따른 우분퇴비화 효과분석 및 우분퇴비의 입상화방법별 특성비교)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-jun;Ravindran, B.;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • In the Korea, 80 percent of livestock manure were converted into compost and used as organic fertilizers. The livestock manure compost has two types of powder and pellet type (ID= 5~10 mm). The aim of this study was to investigate the properties of two types of cow manure compost pellet (cylinder and sphere type). Nitrogen concentrations of cylinder type and sphere type of compost pellets were 1.23 and 1.24%, respectively. There were similar with nitrogen concentration of cylinder and sphere types of compost pellets. As a result of analyzing the effect of granulation processing, it was found that the moisture content of the raw material was the most influential factor in the granulation processing in both of the processing types of the screw pressing method and the rotating cylinder method. When the cylinder and sphere types of compost pellets were dry to 20% of moisture content, the specific gravities of these compost pellets were 1.38 and 1.13, respectively. The compressive strength of cylinder type pellet and sphere type pellet were 27.6 and $11.3kg/cm^2$, respectively.

Study on Optimal Working Conditions for Picking Head of Self-Propelled Pepper Harvester by Factorial Test

  • Kang, Kyung-Sik;Park, Hoon-Sang;Park, Seung-Je;Kang, Young-Sun;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Purpose: Pepper prices have risen continuously because of a decrease in cultivation area; therefore, mechanical harvesting systems for peppers should be developed to reduce cost, time, and labor during harvest. In this study, a screw type picking head for a self-propelled pepper harvester was developed, and the optimal working conditions were evaluated considering helix types, winding directions of helix, and rotational speeds of the helix. Methods: The screw type was selected for the picking head after analyzing previous studies, and the device consisted of helices and a feed chain mechanism for conveying pepper branches. A double helix and a triple helix were manufactured, and rotational speeds of 200, 300, and 400 rpm were tested. The device was controlled by a variable speed (VS) motor and an inverter. Both the forward and reverse directions were tested for the winding and rotating directions of the helix. An experiment crop (cultivar: Longgreenmat) was cultivated in a plastic greenhouse. The test results were analyzed using the SAS program with ANOVA to examine the relationship between each factor and the performance of the picking head. Results: The results of the double and triple helix tests in the reverse direction showed gross harvest efficiency levels of 60-95%, mechanical damage rates of 8-20%, and net marketable portion rates of 50-80%. The dividing ratio was highest at a rotational speed of 400 rpm. Gross harvest efficiency was influenced by the types of helix and rotational speed. Net marketable portion was influenced by rotational speed but not influenced by the type of helix. Mechanical damage was not influenced by the type of helix or rotational speed. Conclusions: Best gross harvest efficiency was obtained at a rotational speed of 400 rpm; however, operating the device at that speed resulted in vibration, which should be reduced.

Unsteady State Heat Transfer Analysis of Drum Brake System (드럼 브레이크 시스템의 비정상 열전달 해석)

  • 이계섭;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.172-181
    • /
    • 1999
  • The brakes employed on commercial vehicles must be able to withstand three types of demanding services which are use-emergency stops from high speed, many repeated stops as in a delivery or bus route, and speed control in mountain descents. Two type of friction brakes are in use ; drum breaks and disc brakes. Drum brakes are of the internally expanding type in which two shoes fitted externally with friction material are forced outward against the inside of a rotating drum on the wheel unit. In this case, the Braking power is produced by the friction force between a drum and a lining, and is converted into heat. In this research an unsteady state heat transfer analysis for drum brake system of heavy truck has been performed by ABAQUS/standard code in the case of single-braking and the repeated braking condition. The temperature histories obtained by the finite Element analysis have been compared with the result calculated by the simplified formulation and the result obtained by the experiment of real vehicle conditions.

  • PDF

Effects of Casing Shape on the Performance of a Small-Size Turbo-Compressor (케이싱 형상 변화가 소형 터보압축기 성능에 미치는 영향)

  • 김동원;김윤제
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1031-1038
    • /
    • 2002
  • The effects of casing shape on the performance and interaction between the impeller and casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuer and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and three-dimensional time-averaged Wavier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around casing and pressure difference between the inlet and outlet of the compressor are peformed for the circular casing. Comparisons of these results between the experimental and numerical analyses are conducted, and reasonable agreement is obtained.