• Title/Summary/Keyword: Rotating-axis

Search Result 287, Processing Time 0.023 seconds

Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine (공탄성 변형효과를 고려한 5MW급 풍력발전 블레이드의 피치각에 따른 성능해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Hwang, Mi-Hyun;Kim, Kyung-Hee;Hwang, Byung-Sun;Hong, Un-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, performance analyses have been conducted for a 5MW class wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Reynolds-averaged Navier-Stokes (RANS) equations with K-${\epsilon}$ turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Predicted aerodynamic performance considering structural deformation effect of the blade show different results compared to the case of rigid blade model.

A Study on a Laser Scanning Vibrometer Using a Magnetostrictive Resonant Device (자기 변형 공진 기구를 이용한 레이저 스캐닝 진동측정기에 관한 연구)

  • 이정화;류제길;박기환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.58-66
    • /
    • 1998
  • A low power consuming laser scanning vibrometer is studied for its development. For its optical system, a laser interferometer is constructed to use the Doppler effect. In order to reduce the driving power of the scanning system, a small displacement of the scanning system is produced, which is achieved by using a magnetostrictive actuator. A sufficient rotating angle of the scanning system is obtained by using an amplified displacement from the resonant phenomena of a second order mechanical system composed of a mass and spring. The control of the magnetostrictive actuator using a Terfenol-D is performed without using a feedback system to help reduce the power consumption. The vibration analysis is made for the sinusoidal scanning input to have the space domain information from the time domain of the velocity of a vibration object. As a partial work of development of a tow power consuming laser scanning vibrometer, in this work, a scanning system which has the above features is developed and experimentally investigated. For the purpose of the optical system calibration, the vibration measurement for one axis is presented and the future works are discussed.

  • PDF

Improving aeroelastic characteristics of helicopter rotor blades in forward flight

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.31-49
    • /
    • 2019
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness and inertia forces on a structure. The conventional method for designing a rotor blade to be free from flutter instability throughout the helicopter's flight regime is to design the blade so that the aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, we analyze the flutter characteristics of a helicopter blades with a periodic change in their sandwich material using a finite element structural model. Results shows great improvements in the flutter forward speed of the rotating blade obtained by using periodic design and increasing the number of periodic cells.

A redshift survey of the nearby galaxy cluster Abell 2107: Global rotation of the cluster and its connection to large-scale structures in the universe

  • Song, Hyunmi;Hwang, Ho Seong;Park, Changbom;Smith, Rory;Einasto, Maret
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.37.2-37.2
    • /
    • 2018
  • We present the results from a spectroscopic survey of the nearby galaxy cluster Abell 2107 at z=0.04 that has been known as a rotating cluster. By combining 978 new redshifts from the MMT/Hectospec observations with the data in the literature, we construct a large sample of 1968 galaxies with measured redshifts at R<60', which results in high (80%) and spatially uniform completeness at $m_{r,Petro,0}<19.1$. We use this sample to study the global rotation of the cluster and its connection to the large-scale structures in the universe. We first apply the caustic method to the sample and identify 285 member galaxies in Abell 2107 at R<60'. We then measure the rotation amplitude and the position angle of rotation axis. The member galaxies show strong global rotation at R<20' ($V/{\sigma}{\sim}0.60-0.70$) with a significance of >3.8 ${\sigma}$, which is confirmed by two independent methods. The rotation becomes weaker in outer regions. We find at least four filamentary structures at $R<30h^{-1}Mpc$ smoothly connected to the cluster galaxies, which can suggest that the global rotation of the cluster is induced by the inflow of galaxies from the surrounding large-scale structures in the universe.

  • PDF

Skeletal stability following mandibular advancement: is it influenced by the magnitude of advancement or changes of the mandibular plane angle?

  • Tabrizi, Reza;Nili, Mahsa;Aliabadi, Ehsan;Pourdanesh, Fereydoun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.3
    • /
    • pp.152-159
    • /
    • 2017
  • Objectives: The aim of this study was to investigate the effects of advancement magnitude and changes in mandibular plane angle on the stability of mandibular advancement. Materials and Methods: This retrospective cohort study evaluated the postoperative stability of mandibular advancement in class II skeletal subjects who underwent bilateral sagittal split osteotomy. Radiographs taken preoperatively, immediately postoperatively and 1 year postoperatively were traced and analyzed using linear and angular measurements. To determine horizontal and vertical relapse, an X-Y coordinate system was established in which the X-axis was constructed by rotating S-N downward by $7^{\circ}$ (approximation of the Frankfort horizontal plane) and the Y-axis was defined as a line perpendicular to the X-axis and passing through the point Sella. For certain reference points including point A, point B, pogonion and menton, the perpendicular distance between each point and both axes was determined and cephalometric variables were recorded as X and Y coordinates. Results: Twenty-five subjects were studied. A significant correlation between the amount of mandibular advancement and relapse in the B point (vertical and horizontal) and the pogonion point was observed (vertical and horizontal, P<0.001). Evaluation of data demonstrated a positive correlation between the mandibular plane angle (SN/ML) change and vertical relapse in the B point (P<0.05). A simple regression model demonstrated that 74% of horizontal relapse and 42.3% of vertical relapse in the B point was related to the amount of mandibular advancement. The receiver operating characteristic test showed that 8.5 mm mandibular advancement is related to a relapse rate of 1 mm or more in the pogonion, vertically or horizontally. Conclusion: The magnitude of mandibular advancement is a stronger surgical predictor for horizontal rather than vertical relapse at the B point. Changes in mandibular plane angle (SN/ML) during surgery affect vertical, but not horizontal relapse at the B point.

Development of Elbow Joint X-ray Examination Aid for Medical Imaging Diagnosis (의료영상 진단을 위한 팔꿉관절 X-선 검사 보조기구 개발)

  • Hyeong-Gyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.127-133
    • /
    • 2024
  • The elbow joint is made up of three different bones. X-rays or other radiological exams are commonly used to diagnose elbow injuries or disorders caused by physical activity and external forces. Previous research on the elbow joint reported a new examination method that meets the imaging evaluation criteria in the tilt position by Z-axis elevation of the forearm. Therefore, this study aims to design an optimized instrument and develop an aid applicable to other upper extremity exams. After completing the 2D drawing and 3D modeling design, the final design divided into four parts was fabricated with a 3D printer using ABS plastic and assembled. The developed examination aid consists of a four-stage Z-axis elevation tilt angle function (0°, 5°, 10°, and 15°) and can rotate and fixate 360° in 1-degree increments. It was designed to withstand a maximum equivalent stress of 56.107 Pa and a displacement of 1.6548e-5 mm through structural analysis to address loading issues caused by cumulative frequency of use and physical utilization. In addition to X-ray exams of the elbow joint, the developed aid can be used for shoulder function tests by rotating the humerus and also be applied to MRI and CT exams as it is made of non-metallic materials. It will contribute to the accuracy and efficiency of medical imaging diagnosis through clinical applications of various devices and medical imaging exams in the future.

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

Development of Life Test Equipment with Real Time Monitoring System for Butterfly Valves

  • Lee, Gi-Chun;Choi, Byung-Oh;Lee, Young-Bum;Park, Jong-Won;Nam, Tae-Yeon;Song, Keun-Won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2017
  • Small valves including ball valves, gate valves and butterfly valves have been adopted in the fields of steam power generation, petrochemical industry, carriers, and oil tankers. Butterfly valves have normally been applied to fields where in narrow places installing the existing valves such as gate valves and ball valves have proven difficult due to the surrounding area and the heavier of these valves. Butterfly valves are used to control the mass flow of the piping system under low pressure by rotating the circular disk installed inside. The butterfly valve is benefitted by having simpler structure in which the flow is controlled by rotating the disc circular plate along the center axis, whereas the weight of the valve is light compared to the gate valve and ball valve above-mentioned, as there is no additional bracket supporting the valve body. The manufacturing company needs to acquire the performance and life test equipment, in the case of adopting the improving factors to detect leakage and damage on the seat of the valve disc. However, small companies, which are manufacturing the industrial valves, normally sell their products without the life test, which is the reliability test and environment test, because of financial and manpower problems. Furthermore, the failure mode analysis of the products failed in the field is likewise problematic as there is no system collecting the failure data on sites for analyzing the failures of valves. The analyzing and researching process is not arranged systematically because of the financial problem. Therefore this study firstly tried to obtain information about the failure data from the sites, analyzed the failure mode based on the field data collected from the customers, and then obtained field data using measuring equipment. Secondly, we designed and manufactured the performance and life test equipment which also have the real time monitoring system with the naked eye for the butterfly valves. The concept of this equipment can also be adopted by other valves, such as the ball valve, gate valve, and various others. It can be applied to variously sized valves, ranging from 25 mm to large sized valves exceeding 3000 mm. Finally, this study carries out the life test with square wave pressure, using performance and life test equipment. The performance found out that the failures from the real time monitoring system were good. The results of this study can be expanded to the other valves like ball valves, gate valves, and control valves to find out the failure mode using the real time monitoring system for durability and performance tests.

The Effect of Magnetic Field Annealing on the Structural and Electromagnetic Properties of Bising $Co_{82}Zr_6Mo_{12}$ Thin Films for Magnetoresistance Elements (자기저항소자의 바이어스용 $Co_{82}Zr_6Mo_{12}$ 박막의 구조 및 전자기적 특성에 미치는 자장 중 열처리의 영향)

  • 김용성;노재철;이경섭;서수정;김기출;송용진
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.111-120
    • /
    • 1999
  • The effects of annealing in rotating magnetic field after deposition on electromagnetic properties of $Co_{82}Zr_6Mo_{12}$ thin (200~1200 $\AA$) films prepared by RF-magnetron sputtering were investigated in terms of microstructure and surface morphology. The coercivity decreases, but $4{\pi}M_5$ does not change with increasing the film thickness. The coercivity of the films was decreased below 300 $^{\circ}C$ due to stress relief and decreasing the surface roughness, while increased at 400 $^{\circ}C$ due to partial grain growth. And then, $4{\rho}M_5$ was almost independent of annealing temperatures below 200 $^{\circ}C$, but increased from 7.4 kG to 8.0 kG at 300 $^{\circ}C$ and at 400 $^{\circ}C$, which was caused by precipitation and growth of fine Co particles in the films. The electrical resistivity of films was decreased with increasing annealing temperatures and the magnetoresistance was a negative value of nearly 0 $\mu$$\Omega$cm. After annealing at 300 $^{\circ}C$, maximum effective permeability was 1200 to the hard axis of the thin films according to high frequency change. Considering the practical application of biasing layers of the films for magnetoresistive heads, optimal annealing conditions was obtained after one hour annealing at 300 $^{\circ}C$ in 400 Oe rotating magnetic field.

  • PDF

Studies on Magnetic Properties of Die-upset Pr-Fe-B Magnets (Die-upset법에 의한 Pr-Fe-B자석의 자기적 성질에 관한 연구)

  • 이경섭;서수정;박현순;이병규;정지연
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 1993
  • Starting ingot of $Pr_{15}Fe_{77}B_{8}$ were prepared by vacuum induction melting under argon atmosphere. The ingot were induction melted in a quartz crucible and then ejected as a molten alloy throuth a 0.6 mrn orifice onto a rotating cop¬per wheel. An anisotropic magnet was prepared from ribbon by hot deformation techniques. A fully dense precursor magnet first made by pressing ribbons at $680^{\circ}C$ under a pressure of $21.8\;kg/mm^{2}$. A substantially oriented magnets were obtained by die-upset under various conditions. As the compression ratio increases, the $B_{r}$ value increases pronouncedly though $_{i}H_{c}$ decreases. Also, XRD analyses show increased diffraction peak from (006). From these results, it can be known that the magnetic easy axis was formed along the compression axis. As the die-upset speed increases, $_{i}H_{c}$ increases though $B_{r}$ decreases. The $B_{r}$ increases up to $750^{\circ}C$ of die-upset temperature and above this temperature decreases. The value of $4{\pi}M_{s}$ of the $Pr_{15}Fe_{77}B_{8}$ alloy prepared is found to be 11.8 KG. When the alloy was compressed by 0.8 under the die-upset speed of 0.05 m/sec at $750^{\circ}C$, $B_{r}$ was 11.0 KG indicating that the alloy has excellent magnetic anistropy. However, this alloy has some limitation because of low $_{i}H_{c}$.

  • PDF