• Title/Summary/Keyword: Rotating magnetic

Search Result 320, Processing Time 0.027 seconds

Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder

  • Saadatfar, M.;Aghaie-Khafri, M.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1411-1437
    • /
    • 2015
  • The electro-magneto- thermo-elastic behavior of a rotating functionally graded long hollow cylinder with functionally graded piezoelectric (FGPM) layers is analytically analyzed. The layers are imperfectly bonded to its inner and outer surfaces. The hybrid cylinder is placed in a constant magnetic field subjected to a thermo-electro-mechanical loading and could be rested on a Winkler-type elastic foundation. The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to be graded in the radial direction according to the power law. The hybrid cylinder is rotating about its axis at a constant angular velocity. The governing equations are solved analytically and then stresses, displacement and electric potential distribution are calculated. Numerical examples are given to illustrate the effects of material in-homogeneity, magnetic field, elastic foundation, applied voltage, imperfect interface and thermo-mechanical boundary condition on the static behavior of a FG smart cylinder.

Linear Actuator using Magnetic Shield of Rotating Magnet Wheel (부분 자기 차폐된 마그네트 휠의 선형구동기로의 응용)

  • Shim, Ki-Bon;Park, Jun-Kyu;Lee, Sang-Heon;Jung, Kwang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.923-925
    • /
    • 2008
  • As known generally, when permanent magnets whose poles are upward and downward in order, arranged into the circumferential direction rotate under the conducting plate, the rotating force acts on the plate as well as the repulsive force. If the magnetic field by the magnet wheel(the above rotating permanent magnets) is partially shielded, the magnet wheel over open region can be a linear induction motor. The distinct feature from induction motor is that the traveling magnet field is produced by the moving permanent magnet instead of ac current. Furthermore, a variation of the open region changes the direction of the thrust force. In this paper, we introduce a concept of the linear actuator using the magnet wheel. Under the above shielding condition, a few simulation results and its verification from a simple test setup are described.

  • PDF

Control of Conductive Plate Through Varying the Open Area Size of the Partially, Magnetically Isolated Electrodyamic Wheel (부분 차폐된 동전기 휠의 개방 영역 크기 조절을 통한 전도성 평판의 제어)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • Shielding the air-gap magnetic field of the electrodynamic wheel below a conductive plate and opening the shielding plate partially, a thrust force and a normal force generate on the conductive plate at the open area. But, as only the variable controlling both forces is a rotating speed of the electrodynamic wheel, it is very difficult to control the forces independently by the speed. So, we discuss a novel method controlling the forces effectively through manipulating a size of the open area. The independent control is made possible by virtue of the feature that the relative ratio between both forces is irrelevant to an air-gap length and determined uniquely for a specific rotating speed of the wheel. Therefore, the rotating speed and the size of open area become new control variables. The feasibility of the method is verified experimentally. Specially, the controllable magnetic forces are used in a noncontact conveyance of the conductive plate.

The Analysis of the Axial Magnetic Force for Large Rotating Machines (대형 회전기 Axial Magnetic Force 해석)

  • Lee Jung-il;Kim Ki-Chan;Kwon Jung-Lock;Jae Jun-Mo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.827-829
    • /
    • 2004
  • A characteristic of the rotating machine that has been receiving relatively little attention is the axial force on the rotor versus its axial displacement from magnetic neutral position. A knowledge of this force is essential to the economic application of thrust bearings for rotating machine and their connected loads. In this paper this axial force is analyzed and calculated and test values are verified with two different machines.

  • PDF

Improved E&S Vector Hysteresis Model for the Precise Modeling of Vector Magnetic Properties of Electrical Steel Sheet (전기강판의 벡터 자기특성 모델링을 위한 개선된 E&S Vector Hysteresis Model)

  • Song, Min-Ho;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1684-1692
    • /
    • 2011
  • Recently, several vector hysteresis models such as vector Preisach, vector Jiles-Atherton and dynamic E&S model have been proposed to describe vector magnetic properties of electrical steel sheets. However, it is still difficult to find an adequate vector hysteresis model in finite element application for both the Non-oriented and Grain-oriented electrical steel sheets under alternating and rotating field conditions. In this paper, an improved E&S vector hysteresis model is suggested to describe the vector magnetic properties of both Non-oriented and Grain-oriented electrical steel sheets under various magnetic field conditions including alternating and rotating magnetic field conditions. The validity of the proposed model is tested through comparisons with the experimental results under various magnetic field conditions.

Experimental Study on the Natural Convective Heat Transfer Characteristics of Ferrofluid for Concentric Annuli under Rotating Magnetic Field (회전수 및 자기장강도 변화에 따른 이중원관내 자성유체의 자연대류 열전달 특성에 관한 실험적 연구)

  • Kim, Hyung-Jin;Seo, Jae-Hyeong;Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.77-81
    • /
    • 2013
  • The objective of this study is experimentally to investigate natural convective heat transfer characteristics of the ferrofluid for a concentric annuli under rotating magnetic field with variations of the revolution and the magnetic field strength. The rotating magnetic field was provided by induction motor with 6 poles and 3 phases and the revolution and the magnetic field strength were controlled by an inverter driver and a voltage meter, respectively. Temperatures of the inner pipe and the outer pipe in the tested concentric annuli were maintained at $30^{\circ}C$ and $25^{\circ}C$, respectively, during the test and the direction of the rotating magnetic field was a counterclockwise. As a result, the natural convective heat transfer characteristics of the ferrofluid for a concentric annuli were increased with the rise of the revolution and magnetic field strength due to the increased heat dissipation between hot side and cold side of the concentric annuli.

Core Material Design of a High Performance Rotating Machine Considering Magnetic Anisotropy

  • Ikariga Atsushi;Enokizono Masato;Shimoji Hiroyasu;Yamashiro Hirofumi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.248-252
    • /
    • 2005
  • This paper deals with a new design method for a small-size rotating machine with high power. In order to achieve high performance, secondary excitation by Nd-Fe-B magnets and the grain oriented electrical steel sheets were selected and a new design using dual rotors is proposed. The outline of the high-performance rotating machine will be presented and the results of the finite element analysis by using this method combined with the E&SS modeling will be shown in the paper.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

Collapse of Magnetised, Singular Isothermal Toroids

  • ALLEN ANTHONY;SHU FRANK;LI ZHI- YUN
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.325-327
    • /
    • 2001
  • This poster summarizes numerical collapse calculations of non-rotating and rotating singular, isothermal toroids that employed the zeus2d (Norman and Stone 1992) magnetohydrodynamics package. In the non-rotating collapse calculations, it is seen that infall proceeds at a constant rate and magnetically supported, high density pseudo-disks form in the equatorial plane. With rotating clouds, however, toroidal magnetic fields grow as infall proceeds, teaming with angular momentum to slow the inflow to the center and generate outflow.

  • PDF

Development of a Magnetic Seal and the Leak Test (마그네틱씰 개발 및 기밀 평가 시험)

  • Kim, Ock-Hyun;Lee, Min-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.79-83
    • /
    • 2011
  • Magnetic seal uses a magnetic fluid to seal a gap between a rotating shaft and housing. It is distinguished from other kinds of seals from the fact that solid contact does not occur in the seal. This implies that it is free from solid rubbing thus dustless and provides a clean circumstance. That is the reason why the magnetic seal is used exclusively for most of vacuum chambers in semiconductor process where dustless clean circumstance is critical. A magnetic seal has been developed of which design parameters are determined based on published data, and an air pressure test has been done to examine its sealing capability. Effects of some design parameters have been studied through FEM analysis. The results show some notable aspects of design parameters and provide suggestions for developing the seals. Regarding the sealing capacity of the magnetic seal the factor to match the theoretical value with the actual one was found to be 0.4~0.7, which means still there is some discrepancy between theory and actual.