• 제목/요약/키워드: Rotating disk flow

검색결과 111건 처리시간 0.026초

Dynamic Characteristics of the Radial Clearance Flow between Axially Oscillating Rotational Disk and Stationary Disk

  • Horiguchi, Hironori;Ueno, Yoshinori;Takahashi, Koutaro;Miyagawa, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.147-155
    • /
    • 2009
  • Dynamic characteristics of the clearance flow between an axially oscillating rotational disk and a stationary disk were examined by experiments and computations based on a bulk flow model. In the case without pressure fluctuations at the inlet and outlet of the clearance, parallel and contracting flow paths had an effect to stabilize the axial oscillation of the rotating disk. The enlarged flow path had an effect to destabilize the axial oscillation due to the negative damping and stiffness for outward and inward flows, respectively. It was shown that the fluid force can be decomposed into the component caused by the inlet or outlet pressure fluctuation without the axial oscillation and that due to the axial oscillation without the inlet or outlet pressure fluctuation. A method to predict the stiffness and damping coefficients is proposed for general cases when the device is combined with an arbitrary flow system.

Mass Transfer to Amalgamated Copper Rotating Disk Electrode

  • Sulaymon, Abbas H.;Abbar, Ali H.
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권4호
    • /
    • pp.165-171
    • /
    • 2012
  • An experimental study of mass transfer to an amalgamated copper rotating disc electrode has been employed to determine an empirical correlation for the mass transfer rate in laminar flow. The study was performed in a three-electrodes configuration using 0.1 M boric acid and 0.1M potassium chloride as supporting electrolyte with Zn (II) concentration in the range (25-100 mg $dm^{-3}$). Polarization curves at different zinc ion concentration are reported. Hydrogen and oxygen reduction has also been considered.The diffusion coefficients and mass transfer coefficient were obtained using limiting diffusion current technique based on zinc ion reduction. A least squares analysis indicates that the laminar flow results for 13067 < Re > 57552 and 550 < Sc > 1390 can be correlated by the following equation with correlation coefficient (CR) equal to 0.98: $sh=0.61Re^{0.5}Sc^{1/3}$.

회전 원판 위 액막 유동 찢김 가시화 (Visualization of rupturing of rotating films)

  • 김동주;김대겸
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.28-33
    • /
    • 2024
  • We visualized the rupturing of liquid films flowing over a disk rotating with large angular velocity. A setup of high speed imaging for liquid flows on dark and reflective surfaces are suggested. From the result, rivulet structures are revealed to be strongly governed by three-dimensional surface structures developed in the film flow. Additionally, unique flow structures including the rivulet sliding and internal meandering are investigated. Generation mechanism of such structures are discussed in terms of the dynamic contact angle theory.

회전날개주위 분자천이유동에 관한 수치해석적 연구 (A numerical study on the molecular transition flow for the rotating blades)

  • 허중식;황영규;김동권
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.640-650
    • /
    • 1998
  • Pumping performances of a helical molecular drag dump(MDP) and of a radial MDPs are numerically analyzed by using the direct simulation Monte Carlo (DSMC) method. A helical- and radial-MDP have rotating pumping channels cut on a cylinder and on a disk, respectively. For a helical MDP, the present results agree quantitatively with the previously known numerical results. For radial MDPs, both of the Type 1 (having pumping channels cut on the stationary disk) and of the Type 2 (having pumping channels cut on the rotating disk) are analyzed to predict their performances for various parameters, i.e., the radius of curvature center of the channel wall, the depth of the channel, the clearance between housing and disk, and the rotating speed. The results show that the performance of the Type 2 is superior to that of the Type 1, and that for all types the pumping efficiency decreases as the clearance increases. Also, the radial type MDP has larger leakage losses in the direction of pumping channel than does the helical one.

기울어진 회전 원판에 의한 원통형 용기내의 자오면 유동의 크기에 관한 연구 (Meridional Circulations in a Sliced Cylinder)

  • 김재원;임홍식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.52-57
    • /
    • 1996
  • Mixing is most important for developing an electric washer which transforms angular momentum from rotating solid wall to laundry clothes inside it. For magnification of this mixing effect, some inventions are introduced to washing machine system, i. e., washing plate, washing rod, and even for washing cap in a model of a Korean manufacture. However, the previous efforts show dissatisfaction up till now. In this paper, a triumph to enhance mixing effects to increase washing performance is presented and verified by numerical investigation. The present model to simulate a washing tub is the simple circular cylinder with two endwall disks which is completely filled with a viscous liquid. The present improvement is to change mounting position of a bottom disk of the model cylinder. Therefore, the aim of this work just proposes a new idea, which is numerically inspected, to a producer of washing machine, In detail, this invention is alternating the mounting position of a rotating bottom disk. Actually skewed pulsator is placed in steady of a flat disk, so the two endwall disks at top and bottom are not in parallel. The angle between an inclined bottom disk and the horizontal plane is fixed as 5 degree and physical domain to consider poses a sliced cylinder. Flow fields in both a right circular cylinder and the present improved model are fully depicted by numerical integration on a body fitted nonorthogonal regular uniform grid system. Numerical data to explain flow structure are plotted for understanding of the effects of the inclined disk. Also enhanced mixing effects by the inclined rotating disk are gauged by accurate numerical data used in this work.

  • PDF

압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석 (Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid)

  • 박준상;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF

스파이럴 채널을 가진 초소형 점성 펌프의 Navier-Stokes 해석 (NAVIER-STOKES SIMULATION OF A VISCOUS MICRO PUMP WITH A SPIRAL CHANNEL)

  • 서주형;강동진
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.90-95
    • /
    • 2011
  • The Navier-Stokes equations are solved to study the flow characteristics of a micro viscous pump. The viscous micropump is consisted of a stationary disk with a spiral shaped channel and a rotating disk. A simple geometrical model for the tip clearance is proposed and validated by comparing computed flow rate with corresponding experimental data. Present numerical solutions show satisfactory agreement with the corresponding experimental data. The tip clearance effect is found to become significant as the rotational speed increases. As the pressure load increases, a reversed flow region is seen to form near the stationary disk. The height of the channel is shown to be optimized in terms of the flow rate for a given rotational speed and pressure load. The optimal height of the channel becomes small as the rotational speed decreases or the pressure load increases. The flow rate of the pump is found to be in proportion to the width of channel.

원관내 밸브 디스크 회전각의 변화에 따른 유동특성 (Characteristics of flow for various rotating angle in cylindrical tube)

  • 심요셉;허형석;변동근;서용권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.75-78
    • /
    • 2002
  • In this paper, flow on the rear region of a butterfly valve was analysed by using numerical and experimental methods. The butterfly-valve disk angle is changed as 0-60 degree and the uniform flow velocity was fixed In this experiment. It was shown that the numerical results are similar to the experimental results. General discussions are given to the flow-pattern change upon the disk angle of the valve.

  • PDF

원판형 드래그펌프 회전자와 고정자 사이의 간극이 성능에 미치는 영향 (Effect of Vertical Clearance Between a Rotor and Stater of a Disk-Type Drag Pump on the Performance)

  • 권명근;황영규
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1501-1510
    • /
    • 2004
  • The pumping characteristics of a single-stage disk-type drag pump (DTDP) are calculated for the variation of the vertical clearance between a rotor and stator by the three-dimensional direct simulation Monte Carlo (DSMC) method. The gas flow mainly belongs to the molecular transition flow region. Spiral channels of a DTDP are cut on the both the upper and lower sides of a rotating disk, but a stationary disk is planar. The interaction between molecules is described by the variable hard-sphere model. The no time counter method is used as a collision sampling technique. The vertical clearance has a significant effect on the pumping performance. Experiments are performed under the outlet pressure range of 0.4∼533 Pa. When the numerical results are compared with the experimental data, the numerical results agree well quantitatively

KEB 경계층 유동의 유동특성 해석 (Hydrodynamic Stability Analysis of KEB Boundary-Layer Flow)

  • 이윤용;이광원;황영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.683-686
    • /
    • 2002
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for three cases flows using linear stability theory (i.e. Rossby number, Ro = -1, 0, and 1). Detailed numerical values of the disturbance wave number, wave frequency, azimuth angle, radius (Reynolds number, Re) and other characteristics have been calculated for $K{\acute{a}}rm{\acute{a}}n$, Ekman and $B{\"{o}}ewadt$ boundary-layer flows. Neutral curves for these flows are presented. Presented are the neutral stability results concerning the two instability modes (Type I and Type II) by using a two-point boundary value problem code COLUEW that was based upon the adaptive orthogonal collocation method using B-spline. The prediction from the present results on both instability modes among the three cases agrees with the previously known numerical and experimental data well.

  • PDF