Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.4.165

Mass Transfer to Amalgamated Copper Rotating Disk Electrode  

Sulaymon, Abbas H. (Environmental Engineering Department, Baghdad University)
Abbar, Ali H. (Department of Chemical Engineering, Qadessyia University)
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.4, 2012 , pp. 165-171 More about this Journal
Abstract
An experimental study of mass transfer to an amalgamated copper rotating disc electrode has been employed to determine an empirical correlation for the mass transfer rate in laminar flow. The study was performed in a three-electrodes configuration using 0.1 M boric acid and 0.1M potassium chloride as supporting electrolyte with Zn (II) concentration in the range (25-100 mg $dm^{-3}$). Polarization curves at different zinc ion concentration are reported. Hydrogen and oxygen reduction has also been considered.The diffusion coefficients and mass transfer coefficient were obtained using limiting diffusion current technique based on zinc ion reduction. A least squares analysis indicates that the laminar flow results for 13067 < Re > 57552 and 550 < Sc > 1390 can be correlated by the following equation with correlation coefficient (CR) equal to 0.98: $sh=0.61Re^{0.5}Sc^{1/3}$.
Keywords
Rotating disk electrode; Electrodepostion; Mass transfer; Zinc reduction; Amalgamated copper electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. M. A. Brett, Electrochemistry Principles, Methods and Applications, Oxford Science Publication (2002).
2 V. G. Levich, Physicochemical Hydrodynamics, Prentic Hall, Englewood Cliffs, New Jersy (1962).
3 D. Pletcher, I. Whyte, F. C. Walsh and J. P. Millington, J. Appl. Electrochem., 21, 659 (1991).   DOI
4 K. Rajesshwar and J. G. Ibanez, Environmental Electrochemistry: fundamentals and Applications in Pollution Sensors and Pollutant Treatment, Academic Press, San Diego (1997).
5 R. Bertazzoli, R. C. Widner, M. R. V. Lanza, R. A. D. Iglia and M. F. B Sousa, J. Braz. Chem. Soc., 8, 487 (1997).   DOI
6 R. C. Widner, M. F. B. Sousa and R. Bertazzoli, J. Appl. Electrochem., 28, 201 (1998).
7 R. Bertazzoli, C. A. Rodrigues, E. J. Dakan, M. T. Fukunaga, M. R. V. Lanza, R. R. Leme and R. C. Winder, Braz. J. Chem. Eng., 15, 396 (1998).
8 A. R. Ragninic, R. A. DI Iglia, W. Bizzo and R. Bertazzoli, Water Res., 34, 3269 (2000).   DOI   ScienceOn
9 M. R. V. Lanza and R. Bertazzoli, J. Appl. Electrochem., 30, 61 (2000).   DOI   ScienceOn
10 M. Matlosz and J. Newman, J. Electrochem. Soc., 133, 1850 (1986).   DOI   ScienceOn
11 J. Ellison and I. corent, J. Electrochem. Soc., 118, 68-72 (1971).   DOI
12 M. Charles, J. Moher and J. Newman, J. Electrochem. Soc., 123, 1687-1691 (1976).   DOI
13 O. T. Hanna, O. C. Sandall and G. Ruiz-Ibanez, Chem. Eng. Sci., 43, 1410-1407 (1988).   DOI   ScienceOn
14 S.-C. Yen, J.-S. Wang and T. W. Chapman, J. Electrochem. Soc., 139, 2231-2238 (1992).   DOI
15 E. O. Cobo and J. B. Bessone, J. Appl. Electrochem., 28, 803-809 (1998).   DOI   ScienceOn
16 L. Makhloufi, Chem. Eng. J., 130, 39-44 (2007).   DOI   ScienceOn
17 T. R. Ralph, M. L. Hitchman, J. P. Millington and F. C. Walsh, Electrochimica Acta., 51, 133-145 (2005).   DOI   ScienceOn
18 H. V. K. Udupa and N. Nagendra, The Society of Advancement of Electrochemical Science and Technology, New Delhi, 404 (1988).
19 R. N. Adams, Electrochemistry at Solid Electrodes, Edited by J. B. Allen (1969).
20 R. Greef, R. Peat, L. M. Peter and D. Pletcher, In Instrumental Methods in Electrochemistry, Chichester, Ellis Horwood (1990).
21 J. Leffler and H. T. Cullinan, Ind. Eng. Chem. Fundam., 9, 88-93 (1970).   DOI
22 A. R. Gordon, J. Chem. Phys., 5, 52 (1937).
23 V. G. Gurjar and I. M. Sharma, J. Appl. Electrochem., 19, 1113 (1989).
24 J. T Kim and J. Jacob, J. Electrochem. Soc., 127, 8-15 (1980).   DOI
25 M. R. V. Lanze and R. Bertazzoli, J. Appl. Electrochem., 30, 61-70 (2000).   DOI   ScienceOn
26 A. H. Abbar and A. H. Sulaymon, Electrochim. Acta, 53, 1671-1679 (2007).   DOI   ScienceOn