• 제목/요약/키워드: Rotating disk

검색결과 420건 처리시간 0.03초

유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석 (Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis)

  • 정명수;장건희
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.

동시 회전원판 사이의 간격변화에 따른 열전달 특성 (Effects of Gap Spacing on Heat Transfer Characteristics for Co-Rotating Disks)

  • 류구영;원정호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.570-577
    • /
    • 2000
  • Local heat transfer characteristics inside a hard disk driver(HDD) are investigated in this study. The investigation is considered between disks co-rotating in a cylindrical enclosure. The gap spacing, rotating speed and head-arm positions are mainly considered to understand the flow and heat transfer in the co-rotating disks. The naphthalene sublimation technique is used to determine local heat/mass transfer coefficients on the rotating disk. Flow patterns inside the co-rotating disks are investigated using a Laser Doppler Anemometer (LDA) and also analyzed numerically. The results show that the heat transfer coefficients on the disk changed little with the gap spacing between disks. Heat transfer rates in the outer region increases with increasing rotating Renolds number, but the values normalized by that on a free rotating disk give a similar pattern for the tested cases. The head-arm inserted between the rotating disks destroys the inner region resulting in enhancement of heat transfer in that region.

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

복합적층 회전원판의 응력 및 진동 해석 (Stress and Vibration Analysis of Rotating Laminated Composite Disks)

  • 구교남
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.982-989
    • /
    • 2006
  • The centrifugal force acting on a rotating disk creates the in-plane loads in radial and circumferential directions. Application of fiber reinforced composite materials to the rotating disk can satisfy the demand for the increment of its rotating speed. However, the existing researches have been confined to lamina disks. This paper deals with the stress and vibration analysis of rotating laminated composite disks. The maximum strain theory for failure criterion is applied to determine the strength of the laminate disk from which the maximum allowable speed is obtained. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating laminated disks. The Galerkin method is applied to obtain the series solution. The numerical results are given for the cross-ply laminated composite disks.

고속회전 유연디스크의 거동해석과 경험식 (Behavior Analysis and Empirical Relation for a Flexible Disk with High Speed Rotation)

  • 이호렬;임윤철
    • 정보저장시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.245-250
    • /
    • 2006
  • Organizations such as broadcasting stations and libraries which deal with huge amount of information require high-capacity storage systems for archiving their materials and information. It is necessary and urgent for the storage people to develop a compact, high capacity, and low-cost data storage systems. Even though the Blue-ray technology is commercialized and now it is on the market, demand for the compact and low-cost system is still increasing. A flexible disk system has been introduced recently to satisfy above mentioned requirements. The system uses multiple of thin disks and is expected to achieve technical requirements. However, decreasing the disk thickness makes it difficult to read and write data because it decreases the disk rigidity so that the transverse vibration of the rotating disk increases easily due to both the interaction with surrounding air and the vibration characteristics of thin flexible disk itself. In this study, flat-type stabilizer is proposed to suppress the transverse vibration of a $95{\mu}m$-thick polycarbonate disk. Characteristics of disk vibration have been studied through the results of numerical analysis from the fluid mechanics point of view. Numerical simulation is verified through the experiment by measuring the gap between the rotating disk and the stationary flat stabilizer. The axial deflections of the disk are computed for various rotating speeds and reference gap sizes and then a method of regression is applied to those data. As a result, an empirical relation is proposed for the steady deformation shape of the rotating disk.

  • PDF

정전효과가 있는 가열 회전원판으로의 입자침착 해석 (Analysis on Particle Deposition onto a Heated Rotating Disk with Electrostatic Effect)

  • 유경훈
    • 설비공학논문집
    • /
    • 제14권5호
    • /
    • pp.424-432
    • /
    • 2002
  • Numerical analysis has been conducted to characterize deposition rates of aerosol particles onto a heated, rotating disk with electrostatic effect under the laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling, thermophoresis and electrophoresis. The aerosol particles were assumed to have a Boltzmann charge distribution. The electric potential distribution needed to calculate local electric fields around the disk was calculated from the Laplace equation. The Coulomb, the image, the dielectrophoretic and the dipole-dipole forces acting on a charged particle near the conducting rotating disk were included in the analysis. The averaged particle deposition vetocities and their radial distributions on the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference, along with a rotation speed of 0∼1,000rpm, a temperature difference of 0∼5K and a charged disk voltage of 0∼1000V.Finally, an approximate deposition velocity model for the rotating disk was suggested. The present numerical results showed relatively good agreement with the results of the present approximate model and the available experimental data.

가열되는 회전원판으로의 입자 침착 해석 (Analysis on Particle Deposition on a Heated Rotating Disk)

  • 유경훈
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.

공기 유동 효과를 고려한 회전 디스크의 진동 특성 (I) - 이론적 해석 - (Vibration Characteristics of Rotating Disks with Aerodynamic Effect (I) - Theoretical Analysis -)

  • 이승엽;임효석
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.127-134
    • /
    • 2008
  • The aerodynamically excited vibration and natural frequency of rotating disks are analytically studied in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and drag forces. The explicit expressions on natural frequencies of the air coupled disk are obtained as functions of the aerodynamic coefficients. for the three cases where the disk rotates in three different cases (in vacuum, in open air without enclosure, and close to rigid wall). The theoretical results give that the natural frequencies of rotating disks in air are smaller than those in vacuum, because the effect of the added fluid mass decreases the frequencies. This paper also proposes an analytical method to predict the flutter speed of a rotating disk.

광 디스크 드라이브의 공력소음 감소에 관한 연구 (A Study on Reduction of Sound Noise Induced by Disk Rotation in Optical Disk Drives)

  • 송인상;박건순;최학현;김수경;이승엽
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.693-702
    • /
    • 1999
  • We study the characteristics of airflow and sound noise induced by disk rotation in optical disk drives. The characteristics of airflow around a rotating disk surrounded by various tray structures are numerically investigated using a commercial CFD program and then compared with experimental results. Sound pressure and intensity caused by the fluid-structure interactions in the CD/DVD-ROM drive are measured, and the effect of the ariflow on the sound noise and disk vibration is discussed. In order to reduce airflow-induced noise and vibration around the rotating disk, tray geometry is modified. Both numerical and experimental studies implemented with different tray models show that the improved tray model alters the characteristics of the disk-induced airflow, causing the reduction of the airflow-induced sound level.

  • PDF

회전원판을 이용한 디프드로잉용 프레스 개발에 관한 연구 (A Study on the Development of Deep Drawing Press using a Rotating Disk)

  • 황병복;강성호;김진목
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.69-78
    • /
    • 1994
  • A rotating disk is introduced to be applied to the deep drawing press. Several characteristics are summarized to see the basics of deep drawing of sheet metal in terms of load-stroke relationship and formability. Many conventional drawing presses, which are mostly link-type presses, are also shown to be compared with the rotating disk-type press. Performances of the new press are kinematically analyzed it terms of load-main gear angle relationship, stroke-gear angle relationship, and slide velocity-gear angle relationship and they are compared with those of conventional types', e. g. crank press and so on. The comparison show kinematically better performance of rotating disk-type press than that of conventional ones. Also, the new press are proven to be one of the best press for mass production in terms of cycle time. Applicability of the rotating disk press to deep drawing and cold forging work is introduced. The new press is described in terms of economy such that the cost of new press would be much lower than those of conventional types'.