• Title/Summary/Keyword: Rotating Vortices

Search Result 99, Processing Time 0.026 seconds

Numerical analysis on two-dimensional vortex merger (이차원 와류 병합에 대한 수치적 연구)

  • Park, Sanghyun;Sheen, DongJin;Chang, Kyoungsik;Kwag, DongGi
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • During flight of the aircraft, the vortex merging phenomenon appears under the certain condition between co-rotating vortices which were generated at the wing tip and lifting-surface. And then these merged vortices at both sides show counter-rotating pattern to affect on the downstream of the aircraft. In this paper, the numerical simulations are conducted assuming this phenomenon in two-dimensional co-rotating or counter-rotating vortices pairs. Two-dimensional incompressible Navier-Stokes equations were converted into Vorticity-Streamfunction form and the Galerkin spectral method was adopted. The third order Runge-Kutta method was used for time integration. The effects on the vortex merger and degree of vortex merger were investigated according to time, Reynolds number, and changes in the distance between two vortices.

Numerical Study on the Motion of Azimuthal Vortices in Axisymmetric Rotating Flows

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.313-324
    • /
    • 2004
  • A rich phenomenon in the dynamics of azimuthal vortices in a circular cylinder caused by the inertial oscillation is investigated numerically at high Reynolds numbers and moderate Rossby numbers. In the actual spin-up flow where both the Ekman circulation and the bottom friction effects are included, the first appearance of a seed vortex is generated by the Ekman boundary-layer on the bottom wall and the subsequent roll-up near the corner bounded by the side wall. The existence of the small vortex then rapidly propagates toward the inviscid region and induces a complicated pattern in the distribution of azimuthal vorticity, i.e. inertial oscillation. The inertial oscillation however does not deteriorate the classical Ekman-pumping model in the time scale larger than that of the oscillatory motion. Motions of single vortex and a pair of vortices are further investigated under a slip boundary-condition on the solid walls. For the case of single vortex, repeated change of the vorticity sign is observed together with typical propagation of inertial waves. For the case of a pair of vortices with a two-step profile in the initial azimuthal velocity, the vortices' movement toward the outer region is resisted by the crescent-shape vortices surrounding the pair. After touching the border between the core and outer regions, the pair vortices weaken very fast.

Patterns of Barotropic Vortex in a Rotating Fluid and the Structural Rotation of Tripolar Vortex (회전하는 수조에서 나타나는 순압성 소용돌이의 패턴과 트라이폴라 소용돌이의 구조적 회전)

  • Kwon, Hyeok Min;Oh, Young Lok;Kim, Tae Yeon
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.189-194
    • /
    • 2013
  • In this study, the patterns of barotropic vortices and their structural rotation were investigated through laboratory experiments. Both stable and unstable barotropic vortices were formed in a rotating water tank with a rotating circular plate depending on the diameter, direction, and speed of rotating circular plate. The patterns of stable vortices turned out to be tripolar, triangular, rectangular, and monopolar vortex. These vortex patterns were affected by the gap between the circular plate and the wall of the water tank. Many unstable vortices were formed by anticyclonically and highly rotating circular plate. These results were caused by the centrifugal instability. The structural angular velocity of the tripolar vortex increased with the tangential velocity of the circular plate. The anticyclonic tripolar vortex had higher structural angular velocity than the cyclonic vortex. The tripolar vortex in the water tank was very similar with the real oceanic tripolar vortex from the view point of the Rossby number and the structural rotation.

An Experimental Study for the Structure of Conical Vortex at the Low-Rise Building Roof by using a PIV Technique (PIV기법을 이용한 저층 건물 지붕에서 발생되는 원추형 와의 구조에 대한 실험적 연구)

  • Ji, Ho-Seong;Jeong, Eun-Ho;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.667-672
    • /
    • 2000
  • The Characteristics of the conical vortices on the roof surface of a low-rise building has been investigated by using a PIV(Particle Image Velocimerty) technique. The scaled model of TTU building with 1:92 scaling ratio was used. The Reynolds number based on the free stream velocity and the length of the model was $1.96{\times}10^5$. When the angle of attack for the building model is $45^{\circ}$, the conical vortices are occurred symmetrically and the center of vortices are changed with respect to the angle of the approaching flow. The rotating direction of the conical vortices found to be counter-rotating. The secondary vortex motions are investigated using the instantaneous flow field data.

  • PDF

Numerical investigation of effects of rotating downdraft on tornado-like-vortex characteristics

  • Cao, Shuyang;Wang, Mengen;Zhu, Jinwei;Cao, Jinxin;Tamura, Tetsuro;Yang, Qingshan
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.115-128
    • /
    • 2018
  • Appropriate modeling of a tornado-like vortex is a prerequisite when studying the near-ground wind characteristics of a tornado and tornado-induced wind loads on structures. Both Ward- and ISU-type tornado simulators employ guide vanes to induce angular momentum to converge flow in order to generate tornado-like vortices. But in the Ward-type simulator, the guide vanes are mounted near the ground while in the ISU-type they are located at a high position to allow vertical circulation of flow that creates a rotating downdraft to generate a tornado-like vortex. In this study, numerical simulations were performed to reproduce tornado-like vortices using both Ward-type and ISU-type tornado simulators, from which the effects of rotating downdraft on the vortex characteristics were clarified. Particular attention was devoted to the wander of tornado-like vortices, and their dependences on swirl ratio and fetch length were investigated. The present study showed that the dynamic vortex structure depends significantly on the vortex-generating mechanism, although the time-averaged structure remains similar. This feature should be taken into consideration when tornado-like-vortex simulators are utilized to investigate tornado-induced wind forces on structures.

A Numerical Investigation of the Main Rotor Tip-vortex and Counter-rotating Vortex during Hovering Flight (주로터 제자리 비행 시 익단 와류와 Counter-rotating Vortex의 수치적 관찰)

  • Jun, Jonghyuk;Chung, In Jae;Lee, Duck Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.761-769
    • /
    • 2013
  • Effects of helicopter wakes on helicopter aerodynamics are serious, but the wake configuration is very complicated and hard to predict. The purpose of this study is the detailed observation of wake using numerical methods. Vortex lattice method and freewake method are used to track the vortices in the wake. In this paper, the wake configuration is observed during hovering flight. In the case of hovering flight at the moderate thrust level, besides tip vortex, counter-rotating vortex can be observed at the inboard part of blade. When the vortices move downward, tip vortex and counter-rotating vortex get close and influence to each other. Therefore, vortices are highly distorted due to their own instability.

On the Structures of Taylor Vortices. (Taylor Vortex의 구조에 대한 연구)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1081-1088
    • /
    • 2003
  • Numerical investigation on the structures of various Taylor vortices induced in the flow between two concentric cylinders, with the inner one rotating and with a pressure-driven axial flow imposed, is carried out, and compared with the experiments of Wereley and Lueptow [Phys. fluid, 11(12), 1999] who studied the Taylor vortices using PIV in detail. Especially, the properties of helical vortices and random wavy vortices are discussed, and their three-dimensional structures are visualized using the numerical data. Our simulation also predicts that random wavy vortices have quasi-periodic movement which can be explained by traveling waves formed in the azimuthal direction. The numerical results are well consistent with the experimental findings of Wereley and Lueptow.

PIV analysis of free surface effects on flow around a rotating propeller with varying water depth (자유표면과 수심깊이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석)

  • Paik Bu Geun;Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.40-43
    • /
    • 2004
  • The effects of free surface on wake behind a rotating propeller were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured using two-frame PIV technique at tow different blade phases and ensemble-averaged to investigate the phase-averaged flow structure in the wake region. For an isolated propeller, the flow behind the propeller is influenced by the propeller rotation and the free surface. The phase-averaged mean velocity fields show that the potential wake and the viscous wake are formed by the boundary layers developed on the blade surfaces. The interaction between the tip vortices and the slipstream causes the oscillating trajectory of tip vortices. Tip vortices are generated periodically and the slipstream contracts in the near-wake region. The presence of free surface affects the wake structure largely, when the water depth is less than 0.6D. The free surface modifies the vortex structure, especially the tip and trailing vortices and flow structure in slipstreams of the propeller wake behind X/D = 0.3.

  • PDF

Analysis of Flow around a Rotating Marine Propeller using PIV Techniques

  • Lee Sang Joon;Paik Bu Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.169-175
    • /
    • 2004
  • The characteristics of flow around a rotating propeller were investigated using PIV technique. For each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$four hundred instantaneous velocity fields were ensemble averaged to investigate the spatial evolution of the flow around a propeller. The phase-averaged mean velocity fields show that the viscous wake formed by the boundary layers developed on the blade surfaces and the slipstream contraction in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. The boundary layer developed along the ship hull bottom surface of the ship stern provides a strong turbulent shear layer, affecting the vortex structure in the propeller near-wake. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. The turbulence intensity has large values around the tip and trailing vortices. As the wake moves downstream, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and adjacent wake flow.

  • PDF

PIV measurement of roof corner vortices

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.441-454
    • /
    • 2001
  • Conical vortices on roof corners of a prismatic low-rise building have been investigated by using the PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and model height was $5.3{\times}10^3$. Mean and instantaneous vector fields for velocity, vorticity, and turbulent kinetic energy were measured at two vertical planes and for two different flow angles of $30^{\circ}$ and $45^{\circ}$. The measurements provided a clear view of the complex flow structures on roof corners such as a pair of counter rotating conical vortices, secondary vortices, and tertiary vortices. They also enabled accurate and easy measurement of the size of vortices. Additionally, we could easily locate the centers of the vortices from the ensemble averaged velocity fields. It was observed that the flow angle of a $30^{\circ}$ produces a higher level of vorticity and turbulent kinetic energy in one of the pair of vortices than does the $45^{\circ}$ flow angle.