• Title/Summary/Keyword: Rotating Equipment

Search Result 151, Processing Time 0.031 seconds

탄소 나노튜브의 나노 모터 응용 해석

  • Lee Jun-Ha
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.105-108
    • /
    • 2006
  • We investigated the fluidic gas-driven carbon-nanotube motor based on multi-wall carbon nanotubes and fluidic gas flow. Since the origination of the torque was the friction between the carbon nanotube surface and the fluidic gases, the density and the flow rate of the working gas or liquid were very important for the carbon nanotube motor. Molecular simulation results showed that multi-wall carbon nanotubes with very low rotating energy barriers could be effectively used for fluidic gas-driven carbon-nanotube motors.

  • PDF

Analysis of Transportation and Handling system for Advanced spent fuel management process (사용후핵연료 차세대관리공정 운반취급계통 분석)

  • 홍동희;윤지섭;정재후;김영환;박병석;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1438-1441
    • /
    • 2003
  • The project for "Development of Advanced Spent Fuel Management Technology" has a plan of a demonstration for the Advanced Management Process in the hot cell of IMEF. The Advanced Management Process are being developed for efficient and safe management of spent fuels. For the demonstration, several devices which are used to safely transport and handle nuclear materials without scattering have been derived by analyzing the Advanced Management Process, object nuclear material and modules of process equipment and performing graphical simulation of transportation/handling by computers. For verification, powder transportation vessel and handling device have been designed and manufactured. And several tests such as transporting, grappling, rotating the vessel have been performed. Also, the design requirements of transportation/handling equipment have been analyzed based on test results and process studies. The developed design requirements in this research will be used as the design data for the Advanced Management Process.

  • PDF

Velocity and Temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper Channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, C.J.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.53-60
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

A Case Study of the Design of Robot Welding Station in an Excavator Factory Using 3D Simulation (굴삭기공장에서 로봇을 이용한 용접공정의 3D 시뮬레이션 사례 연구)

  • Moon, Dug-Hee;Cho, Hyun-Il;Baek, Seung-Geun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.113-121
    • /
    • 2005
  • Virtual Manufacturing is a powerful methodology for developing a new product, new equipment and new production system. It enables us to check the errors in design before production. This paper deals with a case study of virtual manufacturing in an excavator factory. Boom and rotating table of upper body are selected for application. 3D models of parts and fixtures are developed with CATIA and 3D simulation models are developed with IGRIP. These models are used for the design of fixture to verify the motion of the equipment. As a result, the manual welding systems are replaced by automatic systems and many design errors are corrected in the design phase, which enables us to reduce the developing cost and time.

  • PDF

Research of Circuit Working Construction Elevator with Single-guide Rail and Multi-cages

  • Kun Zhang;Kaiqiang Wang;Di Li;Qing Sun;Zhen Ye;Wei Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.137-144
    • /
    • 2022
  • As one of the most important vertical transportation equipment in super high-rise buildings, the construction elevator directly affects the project period, cost, and effectiveness. The paper proposes a new construction elevator with single-guide rail and multi-cages. It can solve the problems of single construction elevator capacity shortage and efficacy decrease with height reduction, the occupancy of plan and elevation position of multiple construction elevators, and extension of total construction period by cycling operation of multi-cages on a single-guide rail. The paper focuses on the design and research of the main components of the equipment, such as the rotating guide rail mechanism, vertical bearing mast tie system, segmented electrical power supply system, group control scheduling system, and safety anti-collision system.

Anomaly Detection System in Mechanical Facility Equipment: Using Long Short-Term Memory Variational Autoencoder (LSTM-VAE를 활용한 기계시설물 장치의 이상 탐지 시스템)

  • Seo, Jaehong;Park, Junsung;Yoo, Joonwoo;Park, Heejun
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.581-594
    • /
    • 2021
  • Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.

Simulator of Accuracy Prediction for Developing Machine Structures (기계장비의 구조 특성 예측 시뮬레이터)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak;Kim, Yang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-274
    • /
    • 2011
  • This paper presents current state of the prediction simulator of structural characteristics of machinery equipment accuracy. Developed accuracy prediction simulator proceeds and estimates the structural analysis between the designer and simulator through the internet for convenience of designer. 3D CAD model which is input to the accuracy prediction simulator would simplified by the process of removing the small hole, fillet and chamfer. And the structural surface joints would be presented as the spring elements and damping elements for the structural analysis. The structural analysis of machinery equipment joints, containing rotary motion unit, linear motion unit, mounting device and bolted joint, are presented using Finite Element Method and their experiment. Finally, a general method is presented to tune the static stiffness at a rotation joint considering the whole machinery equipment system by interactive use of Finite Element Method and static load experiment.

The Magnetic Properties of Electrical Steel for Rotating Machine according to the Specimen

  • Choi, Yun-Yong;Chin, Jun-Woo;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.209-214
    • /
    • 2016
  • This paper analyzes the magnetic property according to the machined shape of steel material with non-oriented silicon steel (50PN470/50A470), that is most commonly used in the design of electrical equipment. Toward this end, specimens were produced and divided into Bar-Specimen (Epstein Frame Tester) and Ring-Specimen (Toroidal Ring Tester). The characteristics of the electrical Silicon steel were measured using the instruments solely dedicated to measuring each specimen. The core loss of the Bar-Specimen, which is commonly used, was found to be less than that of the Ring-Specimen. This is a very important design factor in achieving the objectives of improving the product efficiency and predicting the performance of electrical equipment. It serves as a critical point of view in order to reduce the error between design value and product value. A comparative analysis was conducted regarding various characteristics (Hysteresis, B-H characteristic, Iron loss, Minor loop, Coercive force, Residual magnetic flux density, etc.) of the electrical silicon steel considered in the design of the electrical equipment according to the specimen.

A Study on the International Standard and Regulation for Electric Motor and Drives (전동기와 드라이브의 국제 규격 및 규제에 관한 현황 연구)

  • Woo, Kyung-Il;Park, Han-Seok;Kim, Dea-Kyong;Choi, Han-Seok;Jun, Hee-Deuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.437-443
    • /
    • 2014
  • Electric motors and drives consume the largest amount of electricity more than 40% of global electricity consumption. In addition, motors, drives and its components are included in the global high-trade products and the main driving source for industrial equipment and house appliances. Thus, International standards and regulations for their safety and efficiency are internationally being discussed and created for the protection of its citizens and energy saving. So, understanding the international standards and the regulation of each country is essential to enhance overseas market and to develop product. In this paper, on the basis of this background, status and trends of international standards and regulations are introduced for safety and efficiency of motors and the drives. Safety and efficiency of the IEC (International Electrotechical Commission) standards are introduced in the emphasis. Also, regulations are studied about the differences and trends in each county.

Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints (원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF